Model Card for Model ID

Model Details

Model Description

東大松尾研LLM講座2024の最終課題向けのelyza-tasks-100-TV_0.jsonlの出力用にFinetuningしたモデルです。 モデルの利用については、提供いただいたOmmniCampusの環境およびサンプルコードに沿ったものとなっております。

  • Developed by: maktag
  • Language(s) (NLP): Japanese
  • Finetuned from model [optional]: llm-jp/llm-jp-3-13b

How to Get Started with the Model

from transformers import AutoTokenizer, AutoModelForCausalLM

# Load the fine-tuned model and tokenizer
base_model_id = "llm-jp/llm-jp-3-13b" 
adapter_id = "maktag/llm-jp-3-13b-finetune8"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

# QLoRA config
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
)

# Load model
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    quantization_config=bnb_config,
    device_map="auto",
    token = HF_TOKEN
)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)

# 元のモデルにLoRAのアダプタを統合。
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)

[More Information Needed]

Training Details

  • Fine-Tuning Framework: LoRA-based PEFT (Parameter-Efficient Fine-Tuning).
  • Dataset: Proprietary Japanese instruction-following dataset.
  • Sequence Length: 512 tokens.
  • Hyperparameters:
    • Batch size: 32
    • Learning rate: 1e-5
    • Epochs: 3

Training Data

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for maktag/llm-jp-3-13b-finetune8

Finetuned
(1120)
this model

Dataset used to train maktag/llm-jp-3-13b-finetune8