SciNCL
SciNCL is a pre-trained BERT language model to generate document-level embeddings of research papers. It uses the citation graph neighborhood to generate samples for contrastive learning. Prior to the contrastive training, the model is initialized with weights from scibert-scivocab-uncased. The underlying citation embeddings are trained on the S2ORC citation graph.
Code: https://github.com/malteos/scincl
PubMedNCL: Working with biomedical papers? Try PubMedNCL.
How to use the pretrained model
Sentence Transformers
from sentence_transformers import SentenceTransformer
# Load the model
model = SentenceTransformer("malteos/scincl")
# Concatenate the title and abstract with the [SEP] token
papers = [
"BERT [SEP] We introduce a new language representation model called BERT",
"Attention is all you need [SEP] The dominant sequence transduction models are based on complex recurrent or convolutional neural networks",
]
# Inference
embeddings = model.encode(papers)
# Compute the (cosine) similarity between embeddings
similarity = model.similarity(embeddings[0], embeddings[1])
print(similarity.item())
# => 0.8440517783164978
Transformers
from transformers import AutoTokenizer, AutoModel
# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('malteos/scincl')
model = AutoModel.from_pretrained('malteos/scincl')
papers = [{'title': 'BERT', 'abstract': 'We introduce a new language representation model called BERT'},
{'title': 'Attention is all you need', 'abstract': ' The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'}]
# concatenate title and abstract with [SEP] token
title_abs = [d['title'] + tokenizer.sep_token + (d.get('abstract') or '') for d in papers]
# preprocess the input
inputs = tokenizer(title_abs, padding=True, truncation=True, return_tensors="pt", max_length=512)
# inference
result = model(**inputs)
# take the first token ([CLS] token) in the batch as the embedding
embeddings = result.last_hidden_state[:, 0, :]
# calculate the similarity
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
similarity = (embeddings[0] @ embeddings[1].T)
print(similarity.item())
# => 0.8440518379211426
Triplet Mining Parameters
Setting | Value |
---|---|
seed | 4 |
triples_per_query | 5 |
easy_positives_count | 5 |
easy_positives_strategy | 5 |
easy_positives_k | 20-25 |
easy_negatives_count | 3 |
easy_negatives_strategy | random_without_knn |
hard_negatives_count | 2 |
hard_negatives_strategy | knn |
hard_negatives_k | 3998-4000 |
SciDocs Results
These model weights are the ones that yielded the best results on SciDocs (seed=4
).
In the paper we report the SciDocs results as mean over ten seeds.
model | mag-f1 | mesh-f1 | co-view-map | co-view-ndcg | co-read-map | co-read-ndcg | cite-map | cite-ndcg | cocite-map | cocite-ndcg | recomm-ndcg | recomm-P@1 | Avg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Doc2Vec | 66.2 | 69.2 | 67.8 | 82.9 | 64.9 | 81.6 | 65.3 | 82.2 | 67.1 | 83.4 | 51.7 | 16.9 | 66.6 |
fasttext-sum | 78.1 | 84.1 | 76.5 | 87.9 | 75.3 | 87.4 | 74.6 | 88.1 | 77.8 | 89.6 | 52.5 | 18 | 74.1 |
SGC | 76.8 | 82.7 | 77.2 | 88 | 75.7 | 87.5 | 91.6 | 96.2 | 84.1 | 92.5 | 52.7 | 18.2 | 76.9 |
SciBERT | 79.7 | 80.7 | 50.7 | 73.1 | 47.7 | 71.1 | 48.3 | 71.7 | 49.7 | 72.6 | 52.1 | 17.9 | 59.6 |
SPECTER | 82 | 86.4 | 83.6 | 91.5 | 84.5 | 92.4 | 88.3 | 94.9 | 88.1 | 94.8 | 53.9 | 20 | 80 |
SciNCL (10 seeds) | 81.4 | 88.7 | 85.3 | 92.3 | 87.5 | 93.9 | 93.6 | 97.3 | 91.6 | 96.4 | 53.9 | 19.3 | 81.8 |
SciNCL (seed=4) | 81.2 | 89.0 | 85.3 | 92.2 | 87.7 | 94.0 | 93.6 | 97.4 | 91.7 | 96.5 | 54.3 | 19.6 | 81.9 |
Additional evaluations are available in the paper.
License
MIT
- Downloads last month
- 42,421
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.