See axolotl config
axolotl version: 0.4.1
\base_model: NousResearch/Meta-Llama-3-8B-Instruct
adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 5a6e8b9ebf7c1456_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5a6e8b9ebf7c1456_train_data.json
type:
field_instruction: context
field_output: question
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: mamung/d93c3772-eb60-43d0-8b31-1bd004c89ab0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00015
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/5a6e8b9ebf7c1456_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 2.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: eddysang
wandb_mode: online
wandb_name: 2acd1e4e-b7c7-430d-9d44-d9ef33c12168
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2acd1e4e-b7c7-430d-9d44-d9ef33c12168
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false
d93c3772-eb60-43d0-8b31-1bd004c89ab0
This model is a fine-tuned version of HuggingFaceH4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.3268
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00015
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=2e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0005 | 1 | 10.3723 |
10.3731 | 0.0043 | 9 | 10.3706 |
10.369 | 0.0086 | 18 | 10.3637 |
10.3575 | 0.0129 | 27 | 10.3481 |
10.3406 | 0.0172 | 36 | 10.3401 |
10.3382 | 0.0215 | 45 | 10.3376 |
10.3358 | 0.0258 | 54 | 10.3354 |
10.3349 | 0.0301 | 63 | 10.3326 |
10.3312 | 0.0344 | 72 | 10.3297 |
10.3303 | 0.0387 | 81 | 10.3277 |
10.3274 | 0.0430 | 90 | 10.3269 |
10.3262 | 0.0473 | 99 | 10.3268 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Model tree for mamung/d93c3772-eb60-43d0-8b31-1bd004c89ab0
Base model
HuggingFaceH4/tiny-random-LlamaForCausalLM