enlm-roberta-130

This model is a fine-tuned version of manirai91/enlm-roberta-final on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4113

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 128
  • total_train_batch_size: 8192
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
  • lr_scheduler_type: polynomial
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
1.5183 0.34 160 1.4159
1.5188 0.69 320 1.4158
1.5205 1.03 480 1.4153
1.5213 1.37 640 1.4162
1.5195 1.72 800 1.4168
1.5194 2.06 960 1.4150
1.5182 2.4 1120 1.4142
1.5182 2.75 1280 1.4131
1.5177 3.09 1440 1.4167
1.5201 3.43 1600 1.4156
1.5173 3.78 1760 1.4111
1.52 4.12 1920 1.4117
1.5184 4.46 2080 1.4151
1.5198 4.81 2240 1.4097
1.5202 5.15 2400 1.4162
1.5166 5.49 2560 1.4130
1.5184 5.84 2720 1.4139
1.5174 6.18 2880 1.4128
1.5161 6.52 3040 1.4126
1.5175 6.87 3200 1.4095
1.5169 7.21 3360 1.4118
1.516 7.55 3520 1.4113
1.5182 7.9 3680 1.4097
1.5195 8.24 3840 1.4118
1.5187 8.26 4000 1.4119
1.5149 8.6 4160 1.4133
1.5183 8.94 4320 1.4097
1.5192 9.29 4480 1.4101
1.5191 9.63 4640 1.4146
1.5192 9.97 4800 1.4165
1.5164 10.32 4960 1.4119
1.5235 10.66 5120 1.4089
1.6571 11.0 5280 1.4121
1.5184 11.35 5440 1.4102
1.5185 11.69 5600 1.4111
1.5172 12.03 5760 1.4142
1.5189 12.38 5920 1.4129
1.5147 12.72 6080 1.4089
1.5177 13.06 6240 1.4098
1.5164 13.41 6400 1.4097
1.5188 13.75 6560 1.4109
1.5158 14.09 6720 1.4134
1.5134 14.44 6880 1.4091
1.5167 14.78 7040 1.4089
1.5163 15.12 7200 1.4140
1.5172 15.47 7360 1.4083
1.5153 15.81 7520 1.4109
1.5164 16.15 7680 1.4093
1.5164 16.17 7840 1.4108
1.515 16.51 8000 1.4102
1.5164 16.86 8160 1.4090
1.5163 17.2 8320 1.4110
1.5142 17.54 8480 1.4122
1.5166 17.89 8640 1.4092
1.5172 18.23 8800 1.4058
1.5153 18.57 8960 1.4112
1.517 18.92 9120 1.4098
1.5163 19.26 9280 1.4113

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.11.0
  • Datasets 2.7.0
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.