See axolotl config
axolotl version: 0.3.0
base_model: manishiitg/open-aditi-hi-v1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
rl: true
datasets:
- path: manishiitg/argilla-ultrafeedback-binarized-preferences-cleaned
split: train
type: ultra_apply_chatml
- path: manishiitg/unalignment-toxic-dpo-v0.1
split: train
type: apply_chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: /sky-notebook/manishiitg/open-aditi-hi-v1-dpo
hub_model_id: manishiitg/open-aditi-hi-v1-dpo
hf_use_auth_token: true
wandb_project: open-aditi-hi-v1-dpo
save_safetensors: true
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: false
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 3
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: true ## manage check point resume from here
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
eval_steps: 0
evals_per_epoch: 0
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 100 ## increase based on your dataset
save_strategy: steps
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
tokens: # these are delimiters
- "<|im_start|>"
- "<|im_end|>"
open-aditi-hi-v1-dpo
This model is a fine-tuned version of manishiitg/open-aditi-hi-v1 on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 6964
Training results
Framework versions
- PEFT 0.7.0
- Transformers 4.37.0.dev0
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 5