Edit model card

final-ft__beto-clinical-wl-es__70k-ultrasounds

This model is a fine-tuned version of plncmm/beto-clinical-wl-es on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5271

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 254 0.8908
No log 2.0 508 0.7526
No log 3.0 762 0.6801
0.9011 4.0 1016 0.6608
0.9011 5.0 1270 0.6265
0.9011 6.0 1524 0.6014
0.9011 7.0 1778 0.5934
0.6433 8.0 2032 0.5762
0.6433 9.0 2286 0.5650
0.6433 10.0 2540 0.5667
0.6433 11.0 2794 0.5629
0.5899 12.0 3048 0.5446
0.5899 13.0 3302 0.5390
0.5899 14.0 3556 0.5454
0.5899 15.0 3810 0.5270
0.5625 16.0 4064 0.5277
0.5625 17.0 4318 0.5387
0.5625 18.0 4572 0.5206
0.5625 19.0 4826 0.5150
0.5508 20.0 5080 0.5271

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for manucos/final-ft__beto-clinical-wl-es__70k-ultrasounds

Finetuned
(3)
this model
Finetunes
1 model