manucos's picture
End of training
2da3376 verified
---
license: apache-2.0
base_model: PlanTL-GOB-ES/roberta-base-bne
tags:
- generated_from_trainer
model-index:
- name: final-ft__roberta-base-bne__70k-ultrasounds
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# final-ft__roberta-base-bne__70k-ultrasounds
This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6164
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 259 | 1.1165 |
| No log | 2.0 | 518 | 0.9244 |
| No log | 3.0 | 777 | 0.8153 |
| 1.0516 | 4.0 | 1036 | 0.7842 |
| 1.0516 | 5.0 | 1295 | 0.7262 |
| 1.0516 | 6.0 | 1554 | 0.7235 |
| 1.0516 | 7.0 | 1813 | 0.6960 |
| 0.7109 | 8.0 | 2072 | 0.6787 |
| 0.7109 | 9.0 | 2331 | 0.6799 |
| 0.7109 | 10.0 | 2590 | 0.6718 |
| 0.7109 | 11.0 | 2849 | 0.6488 |
| 0.6385 | 12.0 | 3108 | 0.6426 |
| 0.6385 | 13.0 | 3367 | 0.6415 |
| 0.6385 | 14.0 | 3626 | 0.6232 |
| 0.6385 | 15.0 | 3885 | 0.6329 |
| 0.6042 | 16.0 | 4144 | 0.6036 |
| 0.6042 | 17.0 | 4403 | 0.6161 |
| 0.6042 | 18.0 | 4662 | 0.6193 |
| 0.6042 | 19.0 | 4921 | 0.6183 |
| 0.587 | 20.0 | 5180 | 0.6164 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1