Edit model card
Configuration Parsing Warning: In adapter_config.json: "peft.base_model_name_or_path" must be a string

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2701
  • Accuracy: {'accuracy': 0.867}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.4135 {'accuracy': 0.854}
0.4732 2.0 500 0.5962 {'accuracy': 0.846}
0.4732 3.0 750 0.6645 {'accuracy': 0.869}
0.3296 4.0 1000 0.8788 {'accuracy': 0.86}
0.3296 5.0 1250 0.9247 {'accuracy': 0.858}
0.1992 6.0 1500 0.9763 {'accuracy': 0.871}
0.1992 7.0 1750 1.1154 {'accuracy': 0.866}
0.0876 8.0 2000 1.2105 {'accuracy': 0.87}
0.0876 9.0 2250 1.2144 {'accuracy': 0.871}
0.0436 10.0 2500 1.2701 {'accuracy': 0.867}

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.0+cpu
  • Datasets 2.16.0
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for maosth/distilbert-base-uncased-lora-text-classification

Adapter
(200)
this model