Edit model card

Wav2Vec2-Large-XLSR-53-German

Fine-tuned facebook/wav2vec2-large-xlsr-53 on German using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "de", split="test[:2%]") 

processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-53-german")
model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-53-german") 

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the {language} test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "de", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-53-german")
model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-53-german") 
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\�\カ\æ\無\ན\カ\臣\ѹ\…\«\»\ð\ı\„\幺\א\ב\比\ш\ע\)\ứ\в\œ\ч\+\—\ш\‚\נ\м\ń\乡\$\=\ש\ф\支\(\°\и\к\̇]'
substitutions = {
    'e' : '[\ə\é\ě\ę\ê\ế\ế\ë\ė\е]',
    'o' : '[\ō\ô\ô\ó\ò\ø\ọ\ŏ\õ\ő\о]',
    'a' : '[\á\ā\ā\ă\ã\å\â\à\ą\а]',
    'c' : '[\č\ć\ç\с]',
    'l' : '[\ł]',
    'u' : '[\ú\ū\ứ\ů]',
    'und' : '[\&]',
    'r' : '[\ř]',
    'y' : '[\ý]',
    's' : '[\ś\š\ș\ş]',
    'i' : '[\ī\ǐ\í\ï\î\ï]',
    'z' : '[\ź\ž\ź\ż]',
    'n' : '[\ñ\ń\ņ]',
    'g' : '[\ğ]',
    'ss' : '[\ß]',
    't' : '[\ț\ť]',
    'd' : '[\ď\đ]',
    "'": '[\ʿ\་\’\`\´\ʻ\`\‘]',
    'p': '\р'
}
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    for x in substitutions:
        batch["sentence"] = re.sub(substitutions[x], x, batch["sentence"])
        speech_array, sampling_rate = torchaudio.load(batch["path"])
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

The model can also be evaluated with in 10% chunks which needs less ressources (to be tested).

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import jiwer
lang_id = "de"

processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-53-german")
model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-53-german") 
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\�\カ\æ\無\ན\カ\臣\ѹ\…\«\»\ð\ı\„\幺\א\ב\比\ш\ע\)\ứ\в\œ\ч\+\—\ш\‚\נ\м\ń\乡\$\=\ש\ф\支\(\°\и\к\̇]'
substitutions = {
    'e' : '[\ə\é\ě\ę\ê\ế\ế\ë\ė\е]',
    'o' : '[\ō\ô\ô\ó\ò\ø\ọ\ŏ\õ\ő\о]',
    'a' : '[\á\ā\ā\ă\ã\å\â\à\ą\а]',
    'c' : '[\č\ć\ç\с]',
    'l' : '[\ł]',
    'u' : '[\ú\ū\ứ\ů]',
    'und' : '[\&]',
    'r' : '[\ř]',
    'y' : '[\ý]',
    's' : '[\ś\š\ș\ş]',
    'i' : '[\ī\ǐ\í\ï\î\ï]',
    'z' : '[\ź\ž\ź\ż]',
    'n' : '[\ñ\ń\ņ]',
    'g' : '[\ğ]',
    'ss' : '[\ß]',
    't' : '[\ț\ť]',
    'd' : '[\ď\đ]',
    "'": '[\ʿ\་\’\`\´\ʻ\`\‘]',
    'p': '\р'
}
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    for x in substitutions:
        batch["sentence"] = re.sub(substitutions[x], x, batch["sentence"])
        speech_array, sampling_rate = torchaudio.load(batch["path"])
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch



# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

H, S, D, I = 0, 0, 0, 0
for i in range(10):
    print("test["+str(10*i)+"%:"+str(10*(i+1))+"%]")
    test_dataset = load_dataset("common_voice", "de", split="test["+str(10*i)+"%:"+str(10*(i+1))+"%]")
    test_dataset = test_dataset.map(speech_file_to_array_fn)
    result = test_dataset.map(evaluate, batched=True, batch_size=8)
    predictions = result["pred_strings"]
    targets = result["sentence"]
    chunk_metrics = jiwer.compute_measures(targets, predictions)
    H = H + chunk_metrics["hits"]
    S = S + chunk_metrics["substitutions"]
    D = D + chunk_metrics["deletions"]
    I = I + chunk_metrics["insertions"]
WER = float(S + D + I) / float(H + S + D)
print("WER: {:2f}".format(WER*100))

Test Result: 15.80 %

Training

The first 50% of the Common Voice train, and 12% of the validation datasets were used for training (30 epochs on first 12% and 3 epochs on the remainder).

Downloads last month
30
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train marcel/wav2vec2-large-xlsr-53-german

Evaluation results