File size: 7,632 Bytes
31b06ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c68cd2
31b06ed
 
 
 
0c68cd2
31b06ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c68cd2
31b06ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ccbe65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b70be6
8ccbe65
 
0c68cd2
31b06ed
 
 
 
0c68cd2
31b06ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
---
language: de
datasets:
- common_voice
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Large 53
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice de
      type: common_voice
      args: de
    metrics:
       - name: Test WER
         type: wer
         value: 15.80 
---

# Wav2Vec2-Large-XLSR-53-German

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on German using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. 
When using this model, make sure that your speech input is sampled at 16kHz.

## Usage

The model can be used directly (without a language model) as follows:

```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "de", split="test[:2%]") 

processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-53-german")
model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-53-german") 

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
	speech_array, sampling_rate = torchaudio.load(batch["path"])
	batch["speech"] = resampler(speech_array).squeeze().numpy()
	return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
	logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```


## Evaluation

The model can be evaluated as follows on the {language} test data of Common Voice.


```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "de", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-53-german")
model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-53-german") 
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\�\カ\æ\無\ན\カ\臣\ѹ\…\«\»\ð\ı\„\幺\א\ב\比\ш\ע\)\ứ\в\œ\ч\+\—\ш\‚\נ\м\ń\乡\$\=\ש\ф\支\(\°\и\к\̇]'
substitutions = {
    'e' : '[\ə\é\ě\ę\ê\ế\ế\ë\ė\е]',
    'o' : '[\ō\ô\ô\ó\ò\ø\ọ\ŏ\õ\ő\о]',
    'a' : '[\á\ā\ā\ă\ã\å\â\à\ą\а]',
    'c' : '[\č\ć\ç\с]',
    'l' : '[\ł]',
    'u' : '[\ú\ū\ứ\ů]',
    'und' : '[\&]',
    'r' : '[\ř]',
    'y' : '[\ý]',
    's' : '[\ś\š\ș\ş]',
    'i' : '[\ī\ǐ\í\ï\î\ï]',
    'z' : '[\ź\ž\ź\ż]',
    'n' : '[\ñ\ń\ņ]',
    'g' : '[\ğ]',
    'ss' : '[\ß]',
    't' : '[\ț\ť]',
    'd' : '[\ď\đ]',
    "'": '[\ʿ\་\’\`\´\ʻ\`\‘]',
    'p': '\р'
}
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    for x in substitutions:
        batch["sentence"] = re.sub(substitutions[x], x, batch["sentence"])
        speech_array, sampling_rate = torchaudio.load(batch["path"])
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```

The model can also be evaluated with in 10% chunks which needs less ressources (to be tested).

```
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import jiwer
lang_id = "de"

processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-53-german")
model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-53-german") 
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\�\カ\æ\無\ན\カ\臣\ѹ\…\«\»\ð\ı\„\幺\א\ב\比\ш\ע\)\ứ\в\œ\ч\+\—\ш\‚\נ\м\ń\乡\$\=\ש\ф\支\(\°\и\к\̇]'
substitutions = {
    'e' : '[\ə\é\ě\ę\ê\ế\ế\ë\ė\е]',
    'o' : '[\ō\ô\ô\ó\ò\ø\ọ\ŏ\õ\ő\о]',
    'a' : '[\á\ā\ā\ă\ã\å\â\à\ą\а]',
    'c' : '[\č\ć\ç\с]',
    'l' : '[\ł]',
    'u' : '[\ú\ū\ứ\ů]',
    'und' : '[\&]',
    'r' : '[\ř]',
    'y' : '[\ý]',
    's' : '[\ś\š\ș\ş]',
    'i' : '[\ī\ǐ\í\ï\î\ï]',
    'z' : '[\ź\ž\ź\ż]',
    'n' : '[\ñ\ń\ņ]',
    'g' : '[\ğ]',
    'ss' : '[\ß]',
    't' : '[\ț\ť]',
    'd' : '[\ď\đ]',
    "'": '[\ʿ\་\’\`\´\ʻ\`\‘]',
    'p': '\р'
}
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    for x in substitutions:
        batch["sentence"] = re.sub(substitutions[x], x, batch["sentence"])
        speech_array, sampling_rate = torchaudio.load(batch["path"])
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch



# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

H, S, D, I = 0, 0, 0, 0
for i in range(10):
    print("test["+str(10*i)+"%:"+str(10*(i+1))+"%]")
    test_dataset = load_dataset("common_voice", "de", split="test["+str(10*i)+"%:"+str(10*(i+1))+"%]")
    test_dataset = test_dataset.map(speech_file_to_array_fn)
    result = test_dataset.map(evaluate, batched=True, batch_size=8)
    predictions = result["pred_strings"]
    targets = result["sentence"]
    chunk_metrics = jiwer.compute_measures(targets, predictions)
    H = H + chunk_metrics["hits"]
    S = S + chunk_metrics["substitutions"]
    D = D + chunk_metrics["deletions"]
    I = I + chunk_metrics["insertions"]
WER = float(S + D + I) / float(H + S + D)
print("WER: {:2f}".format(WER*100))
```

**Test Result**: 15.80 % 


## Training

The first 50% of the Common Voice `train`, and 12% of the `validation` datasets were used for training (30 epochs on first 12% and 3 epochs on the remainder).