Edit model card

SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2

This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

This model was trained within the context of a larger system for ABSA, which looks like so:

  1. Use a spaCy model to select possible aspect span candidates.
  2. Use this SetFit model to filter these possible aspect span candidates.
  3. Use a SetFit model to classify the filtered aspect span candidates.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
aspect
  • 'cord:I charge it at night and skip taking the cord with me because of the good battery life.'
  • 'battery life:I charge it at night and skip taking the cord with me because of the good battery life.'
  • 'service center:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'
no aspect
  • 'night:I charge it at night and skip taking the cord with me because of the good battery life.'
  • 'skip:I charge it at night and skip taking the cord with me because of the good battery life.'
  • 'exchange:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'

Evaluation

Metrics

Label Accuracy
all 0.8948

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import AbsaModel

# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
    "marcelomoreno26/all-MiniLM-L6-v2-absa-aspect2",
    "setfit-absa-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 21.9670 75
Label Training Sample Count
no aspect 690
aspect 644

Training Hyperparameters

  • batch_size: (16, 2)
  • num_epochs: (1, 16)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0000 1 0.3662 -
0.0015 50 0.3374 -
0.0029 100 0.3411 -
0.0044 150 0.2945 -
0.0059 200 0.2944 -
0.0073 250 0.2942 -
0.0088 300 0.2409 -
0.0103 350 0.2817 -
0.0118 400 0.3149 -
0.0132 450 0.2618 -
0.0147 500 0.247 -
0.0162 550 0.2883 -
0.0176 600 0.2783 -
0.0191 650 0.2418 -
0.0206 700 0.2938 -
0.0220 750 0.2376 -
0.0235 800 0.2652 -
0.0250 850 0.2442 -
0.0265 900 0.2678 -
0.0279 950 0.2216 -
0.0294 1000 0.1816 -
0.0309 1050 0.1102 -
0.0323 1100 0.2985 -
0.0338 1150 0.1124 -
0.0353 1200 0.1075 -
0.0367 1250 0.0819 -
0.0382 1300 0.1238 -
0.0397 1350 0.0529 -
0.0412 1400 0.026 -
0.0426 1450 0.0289 -
0.0441 1500 0.067 -
0.0456 1550 0.0276 -
0.0470 1600 0.0162 -
0.0485 1650 0.0083 -
0.0500 1700 0.0017 -
0.0514 1750 0.0028 -
0.0529 1800 0.0045 -
0.0544 1850 0.0022 -
0.0558 1900 0.0014 -
0.0573 1950 0.0059 -
0.0588 2000 0.0019 -
0.0603 2050 0.0014 -
0.0617 2100 0.0022 -
0.0632 2150 0.0005 -
0.0647 2200 0.0008 -
0.0661 2250 0.0005 -
0.0676 2300 0.0006 -
0.0691 2350 0.0003 -
0.0705 2400 0.0007 -
0.0720 2450 0.0005 -
0.0735 2500 0.0005 -
0.0750 2550 0.0612 -
0.0764 2600 0.0004 -
0.0779 2650 0.041 -
0.0794 2700 0.0002 -
0.0808 2750 0.0003 -
0.0823 2800 0.0002 -
0.0838 2850 0.0002 -
0.0852 2900 0.0002 -
0.0867 2950 0.0004 -
0.0882 3000 0.0006 -
0.0897 3050 0.0601 -
0.0911 3100 0.0002 -
0.0926 3150 0.0108 -
0.0941 3200 0.0003 -
0.0955 3250 0.0363 -
0.0970 3300 0.0006 -
0.0985 3350 0.0002 -
0.0999 3400 0.0033 -
0.1014 3450 0.0002 -
0.1029 3500 0.0002 -
0.1044 3550 0.0006 -
0.1058 3600 0.0002 -
0.1073 3650 0.0002 -
0.1088 3700 0.0001 -
0.1102 3750 0.0002 -
0.1117 3800 0.0002 -
0.1132 3850 0.0004 -
0.1146 3900 0.0003 -
0.1161 3950 0.0001 -
0.1176 4000 0.0004 -
0.1190 4050 0.0003 -
0.1205 4100 0.001 -
0.1220 4150 0.0002 -
0.1235 4200 0.0001 -
0.1249 4250 0.0003 -
0.1264 4300 0.0003 -
0.1279 4350 0.0002 -
0.1293 4400 0.0001 -
0.1308 4450 0.0001 -
0.1323 4500 0.0001 -
0.1337 4550 0.0001 -
0.1352 4600 0.0001 -
0.1367 4650 0.0003 -
0.1382 4700 0.0006 -
0.1396 4750 0.0003 -
0.1411 4800 0.0001 -
0.1426 4850 0.0011 -
0.1440 4900 0.0001 -
0.1455 4950 0.0001 -
0.1470 5000 0.0001 -
0.1484 5050 0.0001 -
0.1499 5100 0.0002 -
0.1514 5150 0.0497 -
0.1529 5200 0.0002 -
0.1543 5250 0.0001 -
0.1558 5300 0.0008 -
0.1573 5350 0.0001 -
0.1587 5400 0.0002 -
0.1602 5450 0.0001 -
0.1617 5500 0.0003 -
0.1631 5550 0.0003 -
0.1646 5600 0.0004 -
0.1661 5650 0.0002 -
0.1675 5700 0.0002 -
0.1690 5750 0.0001 -
0.1705 5800 0.0001 -
0.1720 5850 0.0001 -
0.1734 5900 0.0004 -
0.1749 5950 0.0001 -
0.1764 6000 0.0001 -
0.1778 6050 0.0001 -
0.125 1 0.0002 -
0.5 4 0.0003 -
1.0 8 0.0 -
0.0000 1 0.0001 -
0.0015 50 0.0001 -
0.0029 100 0.0 -
0.0044 150 0.0001 -
0.125 1 0.0 -
0.5 4 0.0 -
0.0000 1 0.0003 -
0.0009 50 0.0003 -
0.0018 100 0.0003 -
0.0027 150 0.0001 -
0.0036 200 0.0001 -
0.0045 250 0.1015 -
0.0054 300 0.0005 -
0.0063 350 0.0579 -
0.0072 400 0.0001 -
0.0081 450 0.0897 -
0.0090 500 0.0618 -
0.0099 550 0.0002 -
0.0108 600 0.0001 -
0.0117 650 0.0004 -
0.0126 700 0.0002 -
0.0135 750 0.0002 -
0.0143 800 0.0001 -
0.0152 850 0.062 -
0.0161 900 0.0004 -
0.0170 950 0.0002 -
0.0179 1000 0.0001 -
0.0188 1050 0.0628 -
0.0197 1100 0.0003 -
0.0206 1150 0.0003 -
0.0215 1200 0.0001 -
0.0224 1250 0.0001 -
0.0233 1300 0.0001 -
0.0000 1 0.0002 -
0.0009 50 0.0002 -
0.0018 100 0.0001 -
0.0027 150 0.0001 -
0.0036 200 0.0001 -
0.0045 250 0.0002 -
0.0054 300 0.0001 -
0.0063 350 0.0002 -
0.0072 400 0.0002 -
0.0081 450 0.0262 -
0.0090 500 0.0001 -
0.0099 550 0.0002 -
0.0108 600 0.0001 -
0.0117 650 0.0001 -
0.0126 700 0.0001 -
0.0135 750 0.0001 -
0.0143 800 0.0001 -
0.0152 850 0.0002 -
0.0161 900 0.0001 -
0.0170 950 0.0001 -
0.0179 1000 0.0001 -
0.0188 1050 0.06 -
0.0197 1100 0.0001 -
0.0206 1150 0.0001 -
0.0215 1200 0.0001 -
0.0224 1250 0.0001 -
0.0233 1300 0.0001 -
0.0242 1350 0.0001 -
0.0251 1400 0.0001 -
0.0260 1450 0.0001 -
0.0269 1500 0.0002 -
0.0278 1550 0.0001 -
0.0287 1600 0.0001 -
0.0296 1650 0.0125 -
0.0305 1700 0.0001 -
0.0314 1750 0.0001 -
0.0323 1800 0.0001 -
0.0332 1850 0.0001 -
0.0341 1900 0.0001 -
0.0350 1950 0.0001 -
0.0359 2000 0.0001 -
0.0368 2050 0.0001 -
0.0377 2100 0.0002 -
0.0386 2150 0.0001 -
0.0395 2200 0.0001 -
0.0404 2250 0.0407 -
0.0412 2300 0.0001 -
0.0421 2350 0.0001 -
0.0430 2400 0.0001 -
0.0439 2450 0.0001 -
0.0448 2500 0.0001 -
0.0457 2550 0.0 -
0.0466 2600 0.0 -
0.0475 2650 0.0001 -
0.0484 2700 0.0 -
0.0493 2750 0.0001 -
0.0502 2800 0.0001 -
0.0511 2850 0.0001 -
0.0520 2900 0.0001 -
0.0529 2950 0.0002 -
0.0538 3000 0.0001 -
0.0547 3050 0.0001 -
0.0556 3100 0.0001 -
0.0565 3150 0.0001 -
0.0574 3200 0.0 -
0.0583 3250 0.0 -
0.0592 3300 0.0 -
0.0601 3350 0.0001 -
0.0610 3400 0.0 -
0.0619 3450 0.0 -
0.0628 3500 0.0001 -
0.0637 3550 0.0001 -
0.0646 3600 0.0 -
0.0655 3650 0.0001 -
0.0664 3700 0.0 -
0.0673 3750 0.0001 -
0.0681 3800 0.0 -
0.0690 3850 0.0005 -
0.0699 3900 0.0001 -
0.0708 3950 0.0001 -
0.0717 4000 0.0 -
0.0726 4050 0.0001 -
0.0735 4100 0.0009 -
0.0744 4150 0.0001 -
0.0753 4200 0.0001 -
0.0762 4250 0.0001 -
0.0771 4300 0.0 -
0.0780 4350 0.0001 -
0.0789 4400 0.0001 -
0.0798 4450 0.0001 -
0.0807 4500 0.0 -
0.0816 4550 0.0 -
0.0825 4600 0.0001 -
0.0834 4650 0.0 -
0.0843 4700 0.0 -
0.0852 4750 0.0 -
0.0861 4800 0.0 -
0.0870 4850 0.0 -
0.0879 4900 0.0004 -
0.0888 4950 0.0002 -
0.0897 5000 0.0001 -
0.0906 5050 0.0001 -
0.0915 5100 0.0 -
0.0924 5150 0.0026 -
0.0933 5200 0.0549 -
0.0942 5250 0.0001 -
0.0950 5300 0.0011 -
0.0959 5350 0.0 -
0.0968 5400 0.0 -
0.0977 5450 0.0 -
0.0986 5500 0.0002 -
0.0995 5550 0.0001 -
0.1004 5600 0.0 -
0.1013 5650 0.0001 -
0.1022 5700 0.0001 -
0.1031 5750 0.0 -
0.1040 5800 0.0 -
0.1049 5850 0.0 -
0.1058 5900 0.0203 -
0.1067 5950 0.0001 -
0.1076 6000 0.0 -
0.1085 6050 0.0 -
0.1094 6100 0.0 -
0.1103 6150 0.0 -
0.1112 6200 0.0001 -
0.1121 6250 0.0 -
0.1130 6300 0.0 -
0.1139 6350 0.0 -
0.1148 6400 0.0 -
0.1157 6450 0.0164 -
0.1166 6500 0.0001 -
0.1175 6550 0.0 -
0.1184 6600 0.0001 -
0.1193 6650 0.0002 -
0.1202 6700 0.0001 -
0.1211 6750 0.0 -
0.1219 6800 0.0 -
0.1228 6850 0.0 -
0.1237 6900 0.0 -
0.1246 6950 0.0 -
0.1255 7000 0.0001 -
0.1264 7050 0.0 -
0.1273 7100 0.0 -
0.1282 7150 0.0 -
0.1291 7200 0.0002 -
0.1300 7250 0.0 -
0.1309 7300 0.0 -
0.1318 7350 0.0 -
0.1327 7400 0.0 -
0.1336 7450 0.0 -
0.1345 7500 0.0002 -
0.1354 7550 0.0 -
0.1363 7600 0.0 -
0.1372 7650 0.0001 -
0.1381 7700 0.0001 -
0.1390 7750 0.0001 -
0.1399 7800 0.0001 -
0.1408 7850 0.0 -
0.1417 7900 0.0 -
0.1426 7950 0.0 -
0.1435 8000 0.0142 -
0.1444 8050 0.0001 -
0.1453 8100 0.0 -
0.1462 8150 0.0002 -
0.1471 8200 0.0 -
0.1480 8250 0.0 -
0.1488 8300 0.0 -
0.1497 8350 0.0 -
0.1506 8400 0.0003 -
0.1515 8450 0.0 -
0.1524 8500 0.0 -
0.1533 8550 0.0 -
0.1542 8600 0.0 -
0.1551 8650 0.0 -
0.1560 8700 0.0 -
0.1569 8750 0.0 -
0.1578 8800 0.0 -
0.1587 8850 0.0 -
0.1596 8900 0.0 -
0.1605 8950 0.0 -
0.1614 9000 0.0 -
0.1623 9050 0.0 -
0.1632 9100 0.0 -
0.1641 9150 0.0 -
0.1650 9200 0.0 -
0.1659 9250 0.0001 -
0.1668 9300 0.0 -
0.1677 9350 0.0 -
0.1686 9400 0.0 -
0.1695 9450 0.0 -
0.1704 9500 0.0 -
0.1713 9550 0.0 -
0.1722 9600 0.0 -
0.1731 9650 0.0 -
0.1740 9700 0.0 -
0.1749 9750 0.0 -
0.1758 9800 0.0 -
0.1766 9850 0.0 -
0.1775 9900 0.0 -
0.1784 9950 0.0 -
0.1793 10000 0.0 -
0.1802 10050 0.0097 -
0.1811 10100 0.0 -
0.1820 10150 0.0 -
0.1829 10200 0.0 -
0.1838 10250 0.0 -
0.1847 10300 0.0001 -
0.1856 10350 0.0 -
0.1865 10400 0.0 -
0.1874 10450 0.0 -
0.1883 10500 0.0 -
0.1892 10550 0.0 -
0.1901 10600 0.0 -
0.1910 10650 0.0 -
0.1919 10700 0.0 -
0.1928 10750 0.0 -
0.1937 10800 0.0 -
0.1946 10850 0.0 -
0.1955 10900 0.0 -
0.1964 10950 0.0 -
0.1973 11000 0.0001 -
0.1982 11050 0.0 -
0.1991 11100 0.0 -
0.2000 11150 0.0 -
0.2009 11200 0.0 -
0.2018 11250 0.0004 -
0.2027 11300 0.0001 -
0.2035 11350 0.0001 -
0.2044 11400 0.0 -
0.2053 11450 0.0001 -
0.2062 11500 0.0 -
0.2071 11550 0.0001 -
0.2080 11600 0.0 -
0.2089 11650 0.0 -
0.2098 11700 0.0 -
0.2107 11750 0.0 -
0.2116 11800 0.0 -
0.2125 11850 0.0 -
0.2134 11900 0.0 -
0.2143 11950 0.0001 -
0.2152 12000 0.0 -
0.2161 12050 0.0 -
0.2170 12100 0.0 -
0.2179 12150 0.0 -
0.2188 12200 0.0 -
0.2197 12250 0.0 -
0.2206 12300 0.0 -
0.2215 12350 0.0 -
0.2224 12400 0.0 -
0.2233 12450 0.0 -
0.2242 12500 0.0 -
0.2251 12550 0.0 -
0.2260 12600 0.0 -
0.2269 12650 0.0 -
0.2278 12700 0.0 -
0.2287 12750 0.0 -
0.2296 12800 0.0 -
0.2304 12850 0.0 -
0.2313 12900 0.0 -
0.2322 12950 0.0 -
0.2331 13000 0.0 -
0.2340 13050 0.0 -
0.2349 13100 0.0 -
0.2358 13150 0.0264 -
0.2367 13200 0.0 -
0.2376 13250 0.0 -
0.2385 13300 0.0 -
0.2394 13350 0.0 -
0.2403 13400 0.0 -
0.2412 13450 0.0 -
0.2421 13500 0.0 -
0.2430 13550 0.0 -
0.2439 13600 0.0 -
0.2448 13650 0.0 -
0.2457 13700 0.0 -
0.2466 13750 0.0 -
0.2475 13800 0.0 -
0.2484 13850 0.0 -
0.2493 13900 0.0 -
0.2502 13950 0.0 -
0.2511 14000 0.0 -
0.2520 14050 0.0 -
0.2529 14100 0.0 -
0.2538 14150 0.0001 -
0.2547 14200 0.0 -
0.2556 14250 0.0 -
0.2565 14300 0.0 -
0.2573 14350 0.0 -
0.2582 14400 0.0 -
0.2591 14450 0.0 -
0.2600 14500 0.0 -
0.2609 14550 0.0001 -
0.2618 14600 0.0 -
0.2627 14650 0.0 -
0.2636 14700 0.0 -
0.2645 14750 0.0 -
0.2654 14800 0.0 -
0.2663 14850 0.0 -
0.2672 14900 0.0 -
0.2681 14950 0.0001 -
0.2690 15000 0.0 -
0.2699 15050 0.0 -
0.2708 15100 0.0 -
0.2717 15150 0.0 -
0.2726 15200 0.0 -
0.2735 15250 0.0 -
0.2744 15300 0.0 -
0.2753 15350 0.0 -
0.2762 15400 0.0 -
0.2771 15450 0.0 -
0.2780 15500 0.0001 -
0.2789 15550 0.0621 -
0.2798 15600 0.0056 -
0.2807 15650 0.0 -
0.2816 15700 0.0 -
0.2825 15750 0.0145 -
0.2834 15800 0.0 -
0.2842 15850 0.0 -
0.2851 15900 0.0166 -
0.2860 15950 0.0 -
0.2869 16000 0.0 -
0.2878 16050 0.0 -
0.2887 16100 0.0166 -
0.2896 16150 0.0 -
0.2905 16200 0.0 -
0.2914 16250 0.0169 -
0.2923 16300 0.0 -
0.2932 16350 0.0 -
0.2941 16400 0.0 -
0.2950 16450 0.0 -
0.2959 16500 0.0 -
0.2968 16550 0.0 -
0.2977 16600 0.0 -
0.2986 16650 0.0 -
0.2995 16700 0.0 -
0.3004 16750 0.0 -
0.3013 16800 0.0 -
0.3022 16850 0.0 -
0.3031 16900 0.0 -
0.3040 16950 0.0 -
0.3049 17000 0.0 -
0.3058 17050 0.0138 -
0.3067 17100 0.0 -
0.3076 17150 0.0 -
0.3085 17200 0.0 -
0.3094 17250 0.0 -
0.3103 17300 0.0 -
0.3111 17350 0.0 -
0.3120 17400 0.0 -
0.3129 17450 0.0001 -
0.3138 17500 0.0 -
0.3147 17550 0.0 -
0.3156 17600 0.0 -
0.3165 17650 0.0 -
0.3174 17700 0.0 -
0.3183 17750 0.0 -
0.3192 17800 0.0 -
0.3201 17850 0.0 -
0.3210 17900 0.0 -
0.3219 17950 0.0001 -
0.3228 18000 0.0 -
0.3237 18050 0.0 -
0.3246 18100 0.0 -
0.3255 18150 0.0 -
0.3264 18200 0.0 -
0.3273 18250 0.0 -
0.3282 18300 0.0 -
0.3291 18350 0.0 -
0.3300 18400 0.0 -
0.3309 18450 0.0003 -
0.3318 18500 0.0 -
0.3327 18550 0.0 -
0.3336 18600 0.0 -
0.3345 18650 0.0 -
0.3354 18700 0.0 -
0.3363 18750 0.0 -
0.3372 18800 0.0 -
0.3380 18850 0.0 -
0.3389 18900 0.0 -
0.3398 18950 0.0 -
0.3407 19000 0.0 -
0.3416 19050 0.0 -
0.3425 19100 0.0 -
0.3434 19150 0.0 -
0.3443 19200 0.0 -
0.3452 19250 0.0 -
0.3461 19300 0.0 -
0.3470 19350 0.0 -
0.3479 19400 0.0 -
0.3488 19450 0.0 -
0.3497 19500 0.0001 -
0.3506 19550 0.0131 -
0.3515 19600 0.0 -
0.3524 19650 0.0 -
0.3533 19700 0.0 -
0.3542 19750 0.0 -
0.3551 19800 0.0 -
0.3560 19850 0.0 -
0.3569 19900 0.0 -
0.3578 19950 0.0 -
0.3587 20000 0.0 -
0.3596 20050 0.0 -
0.3605 20100 0.0 -
0.3614 20150 0.0 -
0.3623 20200 0.0208 -
0.3632 20250 0.0 -
0.3641 20300 0.0 -
0.3650 20350 0.0 -
0.3658 20400 0.0 -
0.3667 20450 0.0 -
0.3676 20500 0.0 -
0.3685 20550 0.0 -
0.3694 20600 0.0 -
0.3703 20650 0.0 -
0.3712 20700 0.0 -
0.3721 20750 0.0 -
0.3730 20800 0.0 -
0.3739 20850 0.0 -
0.3748 20900 0.0 -
0.3757 20950 0.0 -
0.3766 21000 0.0 -
0.3775 21050 0.0 -
0.3784 21100 0.0 -
0.3793 21150 0.0 -
0.3802 21200 0.0 -
0.3811 21250 0.0 -
0.3820 21300 0.0 -
0.3829 21350 0.0 -
0.3838 21400 0.0 -
0.3847 21450 0.0 -
0.3856 21500 0.0 -
0.3865 21550 0.0 -
0.3874 21600 0.0 -
0.3883 21650 0.0 -
0.3892 21700 0.0 -
0.3901 21750 0.0 -
0.3910 21800 0.0 -
0.3919 21850 0.0001 -
0.3927 21900 0.0 -
0.3936 21950 0.0 -
0.3945 22000 0.0 -
0.3954 22050 0.0 -
0.3963 22100 0.0 -
0.3972 22150 0.0 -
0.3981 22200 0.0 -
0.3990 22250 0.0 -
0.3999 22300 0.0 -
0.4008 22350 0.0 -
0.4017 22400 0.0 -
0.4026 22450 0.0 -
0.4035 22500 0.0 -
0.4044 22550 0.0 -
0.4053 22600 0.0217 -
0.4062 22650 0.0 -
0.4071 22700 0.0 -
0.4080 22750 0.0 -
0.4089 22800 0.0 -
0.4098 22850 0.0 -
0.4107 22900 0.0 -
0.4116 22950 0.0 -
0.4125 23000 0.0 -
0.4134 23050 0.0 -
0.4143 23100 0.0 -
0.4152 23150 0.0 -
0.4161 23200 0.0 -
0.4170 23250 0.0 -
0.4179 23300 0.0 -
0.4188 23350 0.0 -
0.4196 23400 0.0 -
0.4205 23450 0.0 -
0.4214 23500 0.0 -
0.4223 23550 0.0 -
0.4232 23600 0.0 -
0.4241 23650 0.0 -
0.4250 23700 0.0 -
0.4259 23750 0.0 -
0.4268 23800 0.0 -
0.4277 23850 0.0 -
0.4286 23900 0.0098 -
0.4295 23950 0.0 -
0.4304 24000 0.0 -
0.4313 24050 0.0 -
0.4322 24100 0.0 -
0.4331 24150 0.0 -
0.4340 24200 0.0 -
0.4349 24250 0.0 -
0.4358 24300 0.0089 -
0.4367 24350 0.0 -
0.4376 24400 0.0 -
0.4385 24450 0.0 -
0.4394 24500 0.0 -
0.4403 24550 0.0 -
0.4412 24600 0.0092 -
0.4421 24650 0.0003 -
0.4430 24700 0.0283 -
0.4439 24750 0.0 -
0.4448 24800 0.0 -
0.4457 24850 0.0 -
0.4465 24900 0.0 -
0.4474 24950 0.0 -
0.4483 25000 0.0 -
0.4492 25050 0.0 -
0.4501 25100 0.0 -
0.4510 25150 0.0002 -
0.4519 25200 0.0016 -
0.4528 25250 0.0 -
0.4537 25300 0.0 -
0.4546 25350 0.0 -
0.4555 25400 0.0 -
0.4564 25450 0.0 -
0.4573 25500 0.0 -
0.4582 25550 0.0 -
0.4591 25600 0.0 -
0.4600 25650 0.0171 -
0.4609 25700 0.0 -
0.4618 25750 0.0 -
0.4627 25800 0.0161 -
0.4636 25850 0.0 -
0.4645 25900 0.0 -
0.4654 25950 0.0 -
0.4663 26000 0.0 -
0.4672 26050 0.0078 -
0.4681 26100 0.0 -
0.4690 26150 0.0 -
0.4699 26200 0.0 -
0.4708 26250 0.0 -
0.4717 26300 0.0 -
0.4726 26350 0.0 -
0.4734 26400 0.0 -
0.4743 26450 0.0 -
0.4752 26500 0.0091 -
0.4761 26550 0.0 -
0.4770 26600 0.0 -
0.4779 26650 0.0 -
0.4788 26700 0.0 -
0.4797 26750 0.0 -
0.4806 26800 0.0 -
0.4815 26850 0.0 -
0.4824 26900 0.0 -
0.4833 26950 0.0 -
0.4842 27000 0.0 -
0.4851 27050 0.0 -
0.4860 27100 0.0 -
0.4869 27150 0.0 -
0.4878 27200 0.0 -
0.4887 27250 0.0 -
0.4896 27300 0.0 -
0.4905 27350 0.0 -
0.4914 27400 0.0 -
0.4923 27450 0.0 -
0.4932 27500 0.0 -
0.4941 27550 0.0 -
0.4950 27600 0.0 -
0.4959 27650 0.0 -
0.4968 27700 0.0 -
0.4977 27750 0.0 -
0.4986 27800 0.0 -
0.4995 27850 0.0 -
0.5003 27900 0.0273 -
0.5012 27950 0.0 -
0.5021 28000 0.0 -
0.5030 28050 0.0 -
0.5039 28100 0.0 -
0.5048 28150 0.0 -
0.5057 28200 0.0 -
0.5066 28250 0.0 -
0.5075 28300 0.0 -
0.5084 28350 0.0 -
0.5093 28400 0.0 -
0.5102 28450 0.0 -
0.5111 28500 0.0 -
0.5120 28550 0.0 -
0.5129 28600 0.0 -
0.5138 28650 0.0 -
0.5147 28700 0.0 -
0.5156 28750 0.0 -
0.5165 28800 0.0 -
0.5174 28850 0.0 -
0.5183 28900 0.0 -
0.5192 28950 0.017 -
0.5201 29000 0.0 -
0.5210 29050 0.0 -
0.5219 29100 0.0 -
0.5228 29150 0.0 -
0.5237 29200 0.0 -
0.5246 29250 0.0 -
0.5255 29300 0.0 -
0.5264 29350 0.0 -
0.5273 29400 0.0 -
0.5281 29450 0.0 -
0.5290 29500 0.0211 -
0.5299 29550 0.0 -
0.5308 29600 0.0 -
0.5317 29650 0.0 -
0.5326 29700 0.0 -
0.5335 29750 0.0 -
0.5344 29800 0.0 -
0.5353 29850 0.0 -
0.5362 29900 0.0 -
0.5371 29950 0.0 -
0.5380 30000 0.0 -
0.5389 30050 0.0002 -
0.5398 30100 0.0 -
0.5407 30150 0.0 -
0.5416 30200 0.0 -
0.5425 30250 0.0 -
0.5434 30300 0.0 -
0.5443 30350 0.0 -
0.5452 30400 0.0 -
0.5461 30450 0.0 -
0.5470 30500 0.0158 -
0.5479 30550 0.0 -
0.5488 30600 0.0 -
0.5497 30650 0.0 -
0.5506 30700 0.0 -
0.5515 30750 0.0165 -
0.5524 30800 0.0 -
0.5533 30850 0.0 -
0.5542 30900 0.0 -
0.5550 30950 0.0 -
0.5559 31000 0.0 -
0.5568 31050 0.0 -
0.5577 31100 0.0 -
0.5586 31150 0.0132 -
0.5595 31200 0.0 -
0.5604 31250 0.0 -
0.5613 31300 0.0 -
0.5622 31350 0.0 -
0.5631 31400 0.0 -
0.5640 31450 0.0 -
0.5649 31500 0.0 -
0.5658 31550 0.0 -
0.5667 31600 0.0 -
0.5676 31650 0.0 -
0.5685 31700 0.0 -
0.5694 31750 0.0 -
0.5703 31800 0.0 -
0.5712 31850 0.0 -
0.5721 31900 0.0 -
0.5730 31950 0.0185 -
0.5739 32000 0.0 -
0.5748 32050 0.0 -
0.5757 32100 0.0 -
0.5766 32150 0.0 -
0.5775 32200 0.0 -
0.5784 32250 0.0 -
0.5793 32300 0.0 -
0.5802 32350 0.0 -
0.5811 32400 0.0 -
0.5819 32450 0.0 -
0.5828 32500 0.0 -
0.5837 32550 0.0 -
0.5846 32600 0.0 -
0.5855 32650 0.0 -
0.5864 32700 0.0 -
0.5873 32750 0.0 -
0.5882 32800 0.0 -
0.5891 32850 0.0 -
0.5900 32900 0.0 -
0.5909 32950 0.0 -
0.5918 33000 0.0 -
0.5927 33050 0.0 -
0.5936 33100 0.0 -
0.5945 33150 0.0 -
0.5954 33200 0.0 -
0.5963 33250 0.0 -
0.5972 33300 0.0 -
0.5981 33350 0.0 -
0.5990 33400 0.0 -
0.5999 33450 0.0 -
0.6008 33500 0.0 -
0.6017 33550 0.0 -
0.6026 33600 0.0 -
0.6035 33650 0.0 -
0.6044 33700 0.0 -
0.6053 33750 0.0 -
0.6062 33800 0.0 -
0.6071 33850 0.0 -
0.6080 33900 0.0 -
0.6088 33950 0.0 -
0.6097 34000 0.0 -
0.6106 34050 0.0 -
0.6115 34100 0.0 -
0.6124 34150 0.0 -
0.6133 34200 0.0 -
0.6142 34250 0.0 -
0.6151 34300 0.0 -
0.6160 34350 0.0 -
0.6169 34400 0.0 -
0.6178 34450 0.0 -
0.6187 34500 0.0 -
0.6196 34550 0.0 -
0.6205 34600 0.0 -
0.6214 34650 0.0 -
0.6223 34700 0.0 -
0.6232 34750 0.0 -
0.6241 34800 0.0 -
0.6250 34850 0.0 -
0.6259 34900 0.0174 -
0.6268 34950 0.0 -
0.6277 35000 0.0 -
0.6286 35050 0.0 -
0.6295 35100 0.0173 -
0.6304 35150 0.0 -
0.6313 35200 0.0 -
0.6322 35250 0.0 -
0.6331 35300 0.0 -
0.6340 35350 0.0 -
0.6349 35400 0.0 -
0.6357 35450 0.0 -
0.6366 35500 0.0 -
0.6375 35550 0.0 -
0.6384 35600 0.0 -
0.6393 35650 0.0 -
0.6402 35700 0.0 -
0.6411 35750 0.0 -
0.6420 35800 0.0 -
0.6429 35850 0.0 -
0.6438 35900 0.0 -
0.6447 35950 0.0 -
0.6456 36000 0.0 -
0.6465 36050 0.0 -
0.6474 36100 0.0 -
0.6483 36150 0.0 -
0.6492 36200 0.0 -
0.6501 36250 0.0 -
0.6510 36300 0.0115 -
0.6519 36350 0.0 -
0.6528 36400 0.0 -
0.6537 36450 0.0 -
0.6546 36500 0.0 -
0.6555 36550 0.0 -
0.6564 36600 0.0204 -
0.6573 36650 0.0 -
0.6582 36700 0.0125 -
0.6591 36750 0.0 -
0.6600 36800 0.0 -
0.6609 36850 0.0 -
0.6618 36900 0.0 -
0.6626 36950 0.0 -
0.6635 37000 0.0 -
0.6644 37050 0.0 -
0.6653 37100 0.0109 -
0.6662 37150 0.0 -
0.6671 37200 0.0 -
0.6680 37250 0.0 -
0.6689 37300 0.0 -
0.6698 37350 0.0 -
0.6707 37400 0.0 -
0.6716 37450 0.0 -
0.6725 37500 0.0 -
0.6734 37550 0.0 -
0.6743 37600 0.0 -
0.6752 37650 0.0 -
0.6761 37700 0.0 -
0.6770 37750 0.0 -
0.6779 37800 0.0 -
0.6788 37850 0.0 -
0.6797 37900 0.0 -
0.6806 37950 0.0 -
0.6815 38000 0.0 -
0.6824 38050 0.0 -
0.6833 38100 0.0 -
0.6842 38150 0.0 -
0.6851 38200 0.0 -
0.6860 38250 0.0 -
0.6869 38300 0.0 -
0.6878 38350 0.0 -
0.6887 38400 0.0 -
0.6896 38450 0.0 -
0.6904 38500 0.0 -
0.6913 38550 0.0 -
0.6922 38600 0.0 -
0.6931 38650 0.0 -
0.6940 38700 0.0 -
0.6949 38750 0.0 -
0.6958 38800 0.0 -
0.6967 38850 0.0 -
0.6976 38900 0.0 -
0.6985 38950 0.0 -
0.6994 39000 0.0 -
0.7003 39050 0.0 -
0.7012 39100 0.0 -
0.7021 39150 0.0 -
0.7030 39200 0.0 -
0.7039 39250 0.0 -
0.7048 39300 0.0 -
0.7057 39350 0.0 -
0.7066 39400 0.0 -
0.7075 39450 0.0 -
0.7084 39500 0.0 -
0.7093 39550 0.0 -
0.7102 39600 0.0 -
0.7111 39650 0.0 -
0.7120 39700 0.0 -
0.7129 39750 0.0 -
0.7138 39800 0.0 -
0.7147 39850 0.0 -
0.7156 39900 0.0 -
0.7165 39950 0.0 -
0.7173 40000 0.0 -
0.7182 40050 0.0 -
0.7191 40100 0.0 -
0.7200 40150 0.0 -
0.7209 40200 0.0 -
0.7218 40250 0.0 -
0.7227 40300 0.0 -
0.7236 40350 0.0 -
0.7245 40400 0.0 -
0.7254 40450 0.0 -
0.7263 40500 0.0 -
0.7272 40550 0.0 -
0.7281 40600 0.0 -
0.7290 40650 0.0 -
0.7299 40700 0.0 -
0.7308 40750 0.0 -
0.7317 40800 0.0 -
0.7326 40850 0.0 -
0.7335 40900 0.0 -
0.7344 40950 0.0 -
0.7353 41000 0.0 -
0.7362 41050 0.0 -
0.7371 41100 0.0 -
0.7380 41150 0.0153 -
0.7389 41200 0.0 -
0.7398 41250 0.0 -
0.7407 41300 0.0 -
0.7416 41350 0.0 -
0.7425 41400 0.0 -
0.7434 41450 0.0 -
0.7442 41500 0.0 -
0.7451 41550 0.0 -
0.7460 41600 0.0 -
0.7469 41650 0.0 -
0.7478 41700 0.0 -
0.7487 41750 0.0001 -
0.7496 41800 0.0 -
0.7505 41850 0.0 -
0.7514 41900 0.0 -
0.7523 41950 0.0 -
0.7532 42000 0.0 -
0.7541 42050 0.0 -
0.7550 42100 0.0155 -
0.7559 42150 0.0231 -
0.7568 42200 0.0 -
0.7577 42250 0.0 -
0.7586 42300 0.0 -
0.7595 42350 0.0172 -
0.7604 42400 0.0169 -
0.7613 42450 0.0 -
0.7622 42500 0.0 -
0.7631 42550 0.0157 -
0.7640 42600 0.0 -
0.7649 42650 0.0 -
0.7658 42700 0.0 -
0.7667 42750 0.0 -
0.7676 42800 0.0 -
0.7685 42850 0.0 -
0.7694 42900 0.0 -
0.7703 42950 0.0208 -
0.7711 43000 0.0 -
0.7720 43050 0.0 -
0.7729 43100 0.0 -
0.7738 43150 0.0 -
0.7747 43200 0.0 -
0.7756 43250 0.0 -
0.7765 43300 0.0 -
0.7774 43350 0.0 -
0.7783 43400 0.0 -
0.7792 43450 0.0 -
0.7801 43500 0.0 -
0.7810 43550 0.0 -
0.7819 43600 0.0 -
0.7828 43650 0.0 -
0.7837 43700 0.0 -
0.7846 43750 0.0 -
0.7855 43800 0.0 -
0.7864 43850 0.0 -
0.7873 43900 0.0 -
0.7882 43950 0.0 -
0.7891 44000 0.0 -
0.7900 44050 0.0 -
0.7909 44100 0.0 -
0.7918 44150 0.0 -
0.7927 44200 0.0 -
0.7936 44250 0.0 -
0.7945 44300 0.0 -
0.7954 44350 0.0 -
0.7963 44400 0.0 -
0.7972 44450 0.0 -
0.7980 44500 0.0 -
0.7989 44550 0.0 -
0.7998 44600 0.0 -
0.8007 44650 0.0 -
0.8016 44700 0.0 -
0.8025 44750 0.0 -
0.8034 44800 0.0 -
0.8043 44850 0.0 -
0.8052 44900 0.0 -
0.8061 44950 0.0108 -
0.8070 45000 0.0 -
0.8079 45050 0.0 -
0.8088 45100 0.0 -
0.8097 45150 0.0 -
0.8106 45200 0.0 -
0.8115 45250 0.0 -
0.8124 45300 0.0 -
0.8133 45350 0.0 -
0.8142 45400 0.0 -
0.8151 45450 0.0 -
0.8160 45500 0.0 -
0.8169 45550 0.0 -
0.8178 45600 0.0 -
0.8187 45650 0.0 -
0.8196 45700 0.0 -
0.8205 45750 0.0 -
0.8214 45800 0.0 -
0.8223 45850 0.0 -
0.8232 45900 0.0 -
0.8241 45950 0.0 -
0.8249 46000 0.0 -
0.8258 46050 0.0 -
0.8267 46100 0.0211 -
0.8276 46150 0.0 -
0.8285 46200 0.0 -
0.8294 46250 0.0 -
0.8303 46300 0.0 -
0.8312 46350 0.0 -
0.8321 46400 0.0 -
0.8330 46450 0.0 -
0.8339 46500 0.0 -
0.8348 46550 0.0 -
0.8357 46600 0.0 -
0.8366 46650 0.0114 -
0.8375 46700 0.0 -
0.8384 46750 0.0 -
0.8393 46800 0.0 -
0.8402 46850 0.0 -
0.8411 46900 0.0 -
0.8420 46950 0.0 -
0.8429 47000 0.0 -
0.8438 47050 0.0 -
0.8447 47100 0.0 -
0.8456 47150 0.0 -
0.8465 47200 0.0 -
0.8474 47250 0.0 -
0.8483 47300 0.0 -
0.8492 47350 0.0 -
0.8501 47400 0.0 -
0.8510 47450 0.0 -
0.8518 47500 0.0 -
0.8527 47550 0.0 -
0.8536 47600 0.0 -
0.8545 47650 0.0 -
0.8554 47700 0.0 -
0.8563 47750 0.0 -
0.8572 47800 0.0 -
0.8581 47850 0.0 -
0.8590 47900 0.0 -
0.8599 47950 0.0 -
0.8608 48000 0.0178 -
0.8617 48050 0.0 -
0.8626 48100 0.0 -
0.8635 48150 0.0 -
0.8644 48200 0.0 -
0.8653 48250 0.0 -
0.8662 48300 0.0 -
0.8671 48350 0.0 -
0.8680 48400 0.0146 -
0.8689 48450 0.0 -
0.8698 48500 0.0 -
0.8707 48550 0.0 -
0.8716 48600 0.0 -
0.8725 48650 0.0 -
0.8734 48700 0.0 -
0.8743 48750 0.0 -
0.8752 48800 0.0 -
0.8761 48850 0.0146 -
0.8770 48900 0.0 -
0.8779 48950 0.0 -
0.8788 49000 0.0 -
0.8796 49050 0.0145 -
0.8805 49100 0.0 -
0.8814 49150 0.0 -
0.8823 49200 0.0 -
0.8832 49250 0.0 -
0.8841 49300 0.0 -
0.8850 49350 0.0 -
0.8859 49400 0.0 -
0.8868 49450 0.0 -
0.8877 49500 0.0 -
0.8886 49550 0.0 -
0.8895 49600 0.0 -
0.8904 49650 0.0 -
0.8913 49700 0.0 -
0.8922 49750 0.0 -
0.8931 49800 0.0 -
0.8940 49850 0.0 -
0.8949 49900 0.0 -
0.8958 49950 0.0 -
0.8967 50000 0.0 -
0.8976 50050 0.0 -
0.8985 50100 0.0 -
0.8994 50150 0.0 -
0.9003 50200 0.0 -
0.9012 50250 0.0 -
0.9021 50300 0.0 -
0.9030 50350 0.0 -
0.9039 50400 0.0 -
0.9048 50450 0.0 -
0.9057 50500 0.0 -
0.9065 50550 0.0 -
0.9074 50600 0.0 -
0.9083 50650 0.0 -
0.9092 50700 0.0 -
0.9101 50750 0.0 -
0.9110 50800 0.0 -
0.9119 50850 0.0 -
0.9128 50900 0.0 -
0.9137 50950 0.0 -
0.9146 51000 0.0 -
0.9155 51050 0.0163 -
0.9164 51100 0.0 -
0.9173 51150 0.0 -
0.9182 51200 0.0 -
0.9191 51250 0.0 -
0.9200 51300 0.0 -
0.9209 51350 0.0 -
0.9218 51400 0.0 -
0.9227 51450 0.0 -
0.9236 51500 0.0 -
0.9245 51550 0.0 -
0.9254 51600 0.0 -
0.9263 51650 0.0 -
0.9272 51700 0.0 -
0.9281 51750 0.0 -
0.9290 51800 0.0 -
0.9299 51850 0.0 -
0.9308 51900 0.0 -
0.9317 51950 0.0 -
0.9326 52000 0.0 -
0.9334 52050 0.0163 -
0.9343 52100 0.0 -
0.9352 52150 0.0 -
0.9361 52200 0.0 -
0.9370 52250 0.0 -
0.9379 52300 0.0 -
0.9388 52350 0.0 -
0.9397 52400 0.0 -
0.9406 52450 0.0 -
0.9415 52500 0.0162 -
0.9424 52550 0.0 -
0.9433 52600 0.0 -
0.9442 52650 0.0 -
0.9451 52700 0.0 -
0.9460 52750 0.0 -
0.9469 52800 0.0 -
0.9478 52850 0.0149 -
0.9487 52900 0.0 -
0.9496 52950 0.0 -
0.9505 53000 0.0 -
0.9514 53050 0.0 -
0.9523 53100 0.0 -
0.9532 53150 0.0 -
0.9541 53200 0.0 -
0.9550 53250 0.0 -
0.9559 53300 0.0 -
0.9568 53350 0.0 -
0.9577 53400 0.0 -
0.9586 53450 0.0 -
0.9595 53500 0.0 -
0.9603 53550 0.0 -
0.9612 53600 0.0 -
0.9621 53650 0.0 -
0.9630 53700 0.0 -
0.9639 53750 0.0 -
0.9648 53800 0.0 -
0.9657 53850 0.0 -
0.9666 53900 0.0 -
0.9675 53950 0.0 -
0.9684 54000 0.0 -
0.9693 54050 0.0 -
0.9702 54100 0.0 -
0.9711 54150 0.0 -
0.9720 54200 0.0 -
0.9729 54250 0.0 -
0.9738 54300 0.0 -
0.9747 54350 0.0 -
0.9756 54400 0.0 -
0.9765 54450 0.0 -
0.9774 54500 0.0 -
0.9783 54550 0.0 -
0.9792 54600 0.0 -
0.9801 54650 0.0 -
0.9810 54700 0.0 -
0.9819 54750 0.0 -
0.9828 54800 0.0 -
0.9837 54850 0.0 -
0.9846 54900 0.0 -
0.9855 54950 0.0 -
0.9864 55000 0.0 -
0.9872 55050 0.0 -
0.9881 55100 0.0156 -
0.9890 55150 0.0 -
0.9899 55200 0.0 -
0.9908 55250 0.0 -
0.9917 55300 0.0 -
0.9926 55350 0.0 -
0.9935 55400 0.0 -
0.9944 55450 0.0 -
0.9953 55500 0.0 -
0.9962 55550 0.0 -
0.9971 55600 0.0 -
0.9980 55650 0.0 -
0.9989 55700 0.0 -
0.9998 55750 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • spaCy: 3.7.4
  • Transformers: 4.40.1
  • PyTorch: 2.2.1+cu121
  • Datasets: 2.19.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
40
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for marcelomoreno26/all-MiniLM-L6-v2-absa-aspect

Finetuned
(160)
this model

Evaluation results