eladven's picture
Evaluation results for mariolinml/deberta-v3-base_MNLI_10_19_v0 model as a base model for other tasks
6dcbf45
|
raw
history blame
3.73 kB
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: deberta-v3-base_MNLI_10_19_v0
    results: []

deberta-v3-base_MNLI_10_19_v0

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 2

Training results

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1

Model Recycling

Evaluation on 36 datasets using mariolinml/deberta-v3-base_MNLI_10_19_v0 as a base model yields average score of 79.75 in comparison to 79.04 by microsoft/deberta-v3-base.

The model is ranked 3rd among all tested models for the microsoft/deberta-v3-base architecture as of 22/01/2023 Results:

20_newsgroup ag_news amazon_reviews_multi anli boolq cb cola copa dbpedia esnli financial_phrasebank imdb isear mnli mrpc multirc poem_sentiment qnli qqp rotten_tomatoes rte sst2 sst_5bins stsb trec_coarse trec_fine tweet_ev_emoji tweet_ev_emotion tweet_ev_hate tweet_ev_irony tweet_ev_offensive tweet_ev_sentiment wic wnli wsc yahoo_answers
85.8471 90.2333 66.74 60.0625 81.8349 82.1429 84.8514 69 79.4333 91.1136 86.9 94.372 71.382 89.7172 88.2353 64.3771 88.4615 93.758 91.8699 89.7749 85.5596 95.1835 57.4661 91.7396 97.6 91.8 45.526 84.2365 55.9933 79.8469 84.3023 71.2634 70.0627 74.6479 63.4615 72.1333

For more information, see: Model Recycling