wav2vec2-large-xls-r-300m-tira-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2681
  • Wer: 0.2787

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer
4.2937 1.45 400 1.0460 0.9297
0.9157 2.9 800 0.5732 0.6728
0.6258 4.35 1200 0.4319 0.5434
0.5114 5.8 1600 0.3822 0.5465
0.4059 7.25 2000 0.3439 0.4700
0.3407 8.7 2400 0.2997 0.4778
0.2938 10.14 2800 0.2956 0.4121
0.2465 11.59 3200 0.2834 0.3537
0.2148 13.04 3600 0.2662 0.3779
0.1711 14.49 4000 0.2724 0.3160
0.1621 15.94 4400 0.2452 0.3571
0.1301 17.39 4800 0.2638 0.2927
0.1119 18.84 5200 0.2724 0.2765
0.1026 20.29 5600 0.2703 0.2986
0.0906 21.74 6000 0.2642 0.2638
0.0785 23.19 6400 0.2653 0.2709
0.0648 24.64 6800 0.2644 0.2669
0.0578 26.09 7200 0.2712 0.3123
0.0514 27.54 7600 0.2703 0.2672
0.0459 28.99 8000 0.2681 0.2787

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.