markjosims commited on
Commit
fc0165b
1 Parent(s): 56d3c2a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - wer
7
+ model-index:
8
+ - name: wav2vec2-large-xls-r-300m-tira-colab
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xls-r-300m-tira-colab
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2681
20
+ - Wer: 0.2787
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0003
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 500
48
+ - num_epochs: 30
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
53
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
54
+ | 4.2937 | 1.45 | 400 | 1.0460 | 0.9297 |
55
+ | 0.9157 | 2.9 | 800 | 0.5732 | 0.6728 |
56
+ | 0.6258 | 4.35 | 1200 | 0.4319 | 0.5434 |
57
+ | 0.5114 | 5.8 | 1600 | 0.3822 | 0.5465 |
58
+ | 0.4059 | 7.25 | 2000 | 0.3439 | 0.4700 |
59
+ | 0.3407 | 8.7 | 2400 | 0.2997 | 0.4778 |
60
+ | 0.2938 | 10.14 | 2800 | 0.2956 | 0.4121 |
61
+ | 0.2465 | 11.59 | 3200 | 0.2834 | 0.3537 |
62
+ | 0.2148 | 13.04 | 3600 | 0.2662 | 0.3779 |
63
+ | 0.1711 | 14.49 | 4000 | 0.2724 | 0.3160 |
64
+ | 0.1621 | 15.94 | 4400 | 0.2452 | 0.3571 |
65
+ | 0.1301 | 17.39 | 4800 | 0.2638 | 0.2927 |
66
+ | 0.1119 | 18.84 | 5200 | 0.2724 | 0.2765 |
67
+ | 0.1026 | 20.29 | 5600 | 0.2703 | 0.2986 |
68
+ | 0.0906 | 21.74 | 6000 | 0.2642 | 0.2638 |
69
+ | 0.0785 | 23.19 | 6400 | 0.2653 | 0.2709 |
70
+ | 0.0648 | 24.64 | 6800 | 0.2644 | 0.2669 |
71
+ | 0.0578 | 26.09 | 7200 | 0.2712 | 0.3123 |
72
+ | 0.0514 | 27.54 | 7600 | 0.2703 | 0.2672 |
73
+ | 0.0459 | 28.99 | 8000 | 0.2681 | 0.2787 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.30.2
79
+ - Pytorch 2.0.1+cu118
80
+ - Datasets 2.13.1
81
+ - Tokenizers 0.13.3