mart9992's picture
m
2cd560a
raw
history blame
21.8 kB
# Copyright (c) OpenMMLab. All rights reserved.
import copy as cp
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (ConvModule, MaxPool2d, constant_init, kaiming_init,
normal_init)
from ..builder import BACKBONES
from .base_backbone import BaseBackbone
class RSB(nn.Module):
"""Residual Steps block for RSN. Paper ref: Cai et al. "Learning Delicate
Local Representations for Multi-Person Pose Estimation" (ECCV 2020).
Args:
in_channels (int): Input channels of this block.
out_channels (int): Output channels of this block.
num_steps (int): Numbers of steps in RSB
stride (int): stride of the block. Default: 1
downsample (nn.Module): downsample operation on identity branch.
Default: None.
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
expand_times (int): Times by which the in_channels are expanded.
Default:26.
res_top_channels (int): Number of channels of feature output by
ResNet_top. Default:64.
"""
expansion = 1
def __init__(self,
in_channels,
out_channels,
num_steps=4,
stride=1,
downsample=None,
with_cp=False,
norm_cfg=dict(type='BN'),
expand_times=26,
res_top_channels=64):
# Protect mutable default arguments
norm_cfg = cp.deepcopy(norm_cfg)
super().__init__()
assert num_steps > 1
self.in_channels = in_channels
self.branch_channels = self.in_channels * expand_times
self.branch_channels //= res_top_channels
self.out_channels = out_channels
self.stride = stride
self.downsample = downsample
self.with_cp = with_cp
self.norm_cfg = norm_cfg
self.num_steps = num_steps
self.conv_bn_relu1 = ConvModule(
self.in_channels,
self.num_steps * self.branch_channels,
kernel_size=1,
stride=self.stride,
padding=0,
norm_cfg=self.norm_cfg,
inplace=False)
for i in range(self.num_steps):
for j in range(i + 1):
module_name = f'conv_bn_relu2_{i + 1}_{j + 1}'
self.add_module(
module_name,
ConvModule(
self.branch_channels,
self.branch_channels,
kernel_size=3,
stride=1,
padding=1,
norm_cfg=self.norm_cfg,
inplace=False))
self.conv_bn3 = ConvModule(
self.num_steps * self.branch_channels,
self.out_channels * self.expansion,
kernel_size=1,
stride=1,
padding=0,
act_cfg=None,
norm_cfg=self.norm_cfg,
inplace=False)
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
"""Forward function."""
identity = x
x = self.conv_bn_relu1(x)
spx = torch.split(x, self.branch_channels, 1)
outputs = list()
outs = list()
for i in range(self.num_steps):
outputs_i = list()
outputs.append(outputs_i)
for j in range(i + 1):
if j == 0:
inputs = spx[i]
else:
inputs = outputs[i][j - 1]
if i > j:
inputs = inputs + outputs[i - 1][j]
module_name = f'conv_bn_relu2_{i + 1}_{j + 1}'
module_i_j = getattr(self, module_name)
outputs[i].append(module_i_j(inputs))
outs.append(outputs[i][i])
out = torch.cat(tuple(outs), 1)
out = self.conv_bn3(out)
if self.downsample is not None:
identity = self.downsample(identity)
out = out + identity
out = self.relu(out)
return out
class Downsample_module(nn.Module):
"""Downsample module for RSN.
Args:
block (nn.Module): Downsample block.
num_blocks (list): Number of blocks in each downsample unit.
num_units (int): Numbers of downsample units. Default: 4
has_skip (bool): Have skip connections from prior upsample
module or not. Default:False
num_steps (int): Number of steps in a block. Default:4
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
in_channels (int): Number of channels of the input feature to
downsample module. Default: 64
expand_times (int): Times by which the in_channels are expanded.
Default:26.
"""
def __init__(self,
block,
num_blocks,
num_steps=4,
num_units=4,
has_skip=False,
norm_cfg=dict(type='BN'),
in_channels=64,
expand_times=26):
# Protect mutable default arguments
norm_cfg = cp.deepcopy(norm_cfg)
super().__init__()
self.has_skip = has_skip
self.in_channels = in_channels
assert len(num_blocks) == num_units
self.num_blocks = num_blocks
self.num_units = num_units
self.num_steps = num_steps
self.norm_cfg = norm_cfg
self.layer1 = self._make_layer(
block,
in_channels,
num_blocks[0],
expand_times=expand_times,
res_top_channels=in_channels)
for i in range(1, num_units):
module_name = f'layer{i + 1}'
self.add_module(
module_name,
self._make_layer(
block,
in_channels * pow(2, i),
num_blocks[i],
stride=2,
expand_times=expand_times,
res_top_channels=in_channels))
def _make_layer(self,
block,
out_channels,
blocks,
stride=1,
expand_times=26,
res_top_channels=64):
downsample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = ConvModule(
self.in_channels,
out_channels * block.expansion,
kernel_size=1,
stride=stride,
padding=0,
norm_cfg=self.norm_cfg,
act_cfg=None,
inplace=True)
units = list()
units.append(
block(
self.in_channels,
out_channels,
num_steps=self.num_steps,
stride=stride,
downsample=downsample,
norm_cfg=self.norm_cfg,
expand_times=expand_times,
res_top_channels=res_top_channels))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
units.append(
block(
self.in_channels,
out_channels,
num_steps=self.num_steps,
expand_times=expand_times,
res_top_channels=res_top_channels))
return nn.Sequential(*units)
def forward(self, x, skip1, skip2):
out = list()
for i in range(self.num_units):
module_name = f'layer{i + 1}'
module_i = getattr(self, module_name)
x = module_i(x)
if self.has_skip:
x = x + skip1[i] + skip2[i]
out.append(x)
out.reverse()
return tuple(out)
class Upsample_unit(nn.Module):
"""Upsample unit for upsample module.
Args:
ind (int): Indicates whether to interpolate (>0) and whether to
generate feature map for the next hourglass-like module.
num_units (int): Number of units that form a upsample module. Along
with ind and gen_cross_conv, nm_units is used to decide whether
to generate feature map for the next hourglass-like module.
in_channels (int): Channel number of the skip-in feature maps from
the corresponding downsample unit.
unit_channels (int): Channel number in this unit. Default:256.
gen_skip: (bool): Whether or not to generate skips for the posterior
downsample module. Default:False
gen_cross_conv (bool): Whether to generate feature map for the next
hourglass-like module. Default:False
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
out_channels (in): Number of channels of feature output by upsample
module. Must equal to in_channels of downsample module. Default:64
"""
def __init__(self,
ind,
num_units,
in_channels,
unit_channels=256,
gen_skip=False,
gen_cross_conv=False,
norm_cfg=dict(type='BN'),
out_channels=64):
# Protect mutable default arguments
norm_cfg = cp.deepcopy(norm_cfg)
super().__init__()
self.num_units = num_units
self.norm_cfg = norm_cfg
self.in_skip = ConvModule(
in_channels,
unit_channels,
kernel_size=1,
stride=1,
padding=0,
norm_cfg=self.norm_cfg,
act_cfg=None,
inplace=True)
self.relu = nn.ReLU(inplace=True)
self.ind = ind
if self.ind > 0:
self.up_conv = ConvModule(
unit_channels,
unit_channels,
kernel_size=1,
stride=1,
padding=0,
norm_cfg=self.norm_cfg,
act_cfg=None,
inplace=True)
self.gen_skip = gen_skip
if self.gen_skip:
self.out_skip1 = ConvModule(
in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
norm_cfg=self.norm_cfg,
inplace=True)
self.out_skip2 = ConvModule(
unit_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0,
norm_cfg=self.norm_cfg,
inplace=True)
self.gen_cross_conv = gen_cross_conv
if self.ind == num_units - 1 and self.gen_cross_conv:
self.cross_conv = ConvModule(
unit_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
norm_cfg=self.norm_cfg,
inplace=True)
def forward(self, x, up_x):
out = self.in_skip(x)
if self.ind > 0:
up_x = F.interpolate(
up_x,
size=(x.size(2), x.size(3)),
mode='bilinear',
align_corners=True)
up_x = self.up_conv(up_x)
out = out + up_x
out = self.relu(out)
skip1 = None
skip2 = None
if self.gen_skip:
skip1 = self.out_skip1(x)
skip2 = self.out_skip2(out)
cross_conv = None
if self.ind == self.num_units - 1 and self.gen_cross_conv:
cross_conv = self.cross_conv(out)
return out, skip1, skip2, cross_conv
class Upsample_module(nn.Module):
"""Upsample module for RSN.
Args:
unit_channels (int): Channel number in the upsample units.
Default:256.
num_units (int): Numbers of upsample units. Default: 4
gen_skip (bool): Whether to generate skip for posterior downsample
module or not. Default:False
gen_cross_conv (bool): Whether to generate feature map for the next
hourglass-like module. Default:False
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
out_channels (int): Number of channels of feature output by upsample
module. Must equal to in_channels of downsample module. Default:64
"""
def __init__(self,
unit_channels=256,
num_units=4,
gen_skip=False,
gen_cross_conv=False,
norm_cfg=dict(type='BN'),
out_channels=64):
# Protect mutable default arguments
norm_cfg = cp.deepcopy(norm_cfg)
super().__init__()
self.in_channels = list()
for i in range(num_units):
self.in_channels.append(RSB.expansion * out_channels * pow(2, i))
self.in_channels.reverse()
self.num_units = num_units
self.gen_skip = gen_skip
self.gen_cross_conv = gen_cross_conv
self.norm_cfg = norm_cfg
for i in range(num_units):
module_name = f'up{i + 1}'
self.add_module(
module_name,
Upsample_unit(
i,
self.num_units,
self.in_channels[i],
unit_channels,
self.gen_skip,
self.gen_cross_conv,
norm_cfg=self.norm_cfg,
out_channels=64))
def forward(self, x):
out = list()
skip1 = list()
skip2 = list()
cross_conv = None
for i in range(self.num_units):
module_i = getattr(self, f'up{i + 1}')
if i == 0:
outi, skip1_i, skip2_i, _ = module_i(x[i], None)
elif i == self.num_units - 1:
outi, skip1_i, skip2_i, cross_conv = module_i(x[i], out[i - 1])
else:
outi, skip1_i, skip2_i, _ = module_i(x[i], out[i - 1])
out.append(outi)
skip1.append(skip1_i)
skip2.append(skip2_i)
skip1.reverse()
skip2.reverse()
return out, skip1, skip2, cross_conv
class Single_stage_RSN(nn.Module):
"""Single_stage Residual Steps Network.
Args:
unit_channels (int): Channel number in the upsample units. Default:256.
num_units (int): Numbers of downsample/upsample units. Default: 4
gen_skip (bool): Whether to generate skip for posterior downsample
module or not. Default:False
gen_cross_conv (bool): Whether to generate feature map for the next
hourglass-like module. Default:False
has_skip (bool): Have skip connections from prior upsample
module or not. Default:False
num_steps (int): Number of steps in RSB. Default: 4
num_blocks (list): Number of blocks in each downsample unit.
Default: [2, 2, 2, 2] Note: Make sure num_units==len(num_blocks)
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
in_channels (int): Number of channels of the feature from ResNet_Top.
Default: 64.
expand_times (int): Times by which the in_channels are expanded in RSB.
Default:26.
"""
def __init__(self,
has_skip=False,
gen_skip=False,
gen_cross_conv=False,
unit_channels=256,
num_units=4,
num_steps=4,
num_blocks=[2, 2, 2, 2],
norm_cfg=dict(type='BN'),
in_channels=64,
expand_times=26):
# Protect mutable default arguments
norm_cfg = cp.deepcopy(norm_cfg)
num_blocks = cp.deepcopy(num_blocks)
super().__init__()
assert len(num_blocks) == num_units
self.has_skip = has_skip
self.gen_skip = gen_skip
self.gen_cross_conv = gen_cross_conv
self.num_units = num_units
self.num_steps = num_steps
self.unit_channels = unit_channels
self.num_blocks = num_blocks
self.norm_cfg = norm_cfg
self.downsample = Downsample_module(RSB, num_blocks, num_steps,
num_units, has_skip, norm_cfg,
in_channels, expand_times)
self.upsample = Upsample_module(unit_channels, num_units, gen_skip,
gen_cross_conv, norm_cfg, in_channels)
def forward(self, x, skip1, skip2):
mid = self.downsample(x, skip1, skip2)
out, skip1, skip2, cross_conv = self.upsample(mid)
return out, skip1, skip2, cross_conv
class ResNet_top(nn.Module):
"""ResNet top for RSN.
Args:
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
channels (int): Number of channels of the feature output by ResNet_top.
"""
def __init__(self, norm_cfg=dict(type='BN'), channels=64):
# Protect mutable default arguments
norm_cfg = cp.deepcopy(norm_cfg)
super().__init__()
self.top = nn.Sequential(
ConvModule(
3,
channels,
kernel_size=7,
stride=2,
padding=3,
norm_cfg=norm_cfg,
inplace=True), MaxPool2d(kernel_size=3, stride=2, padding=1))
def forward(self, img):
return self.top(img)
@BACKBONES.register_module()
class RSN(BaseBackbone):
"""Residual Steps Network backbone. Paper ref: Cai et al. "Learning
Delicate Local Representations for Multi-Person Pose Estimation" (ECCV
2020).
Args:
unit_channels (int): Number of Channels in an upsample unit.
Default: 256
num_stages (int): Number of stages in a multi-stage RSN. Default: 4
num_units (int): NUmber of downsample/upsample units in a single-stage
RSN. Default: 4 Note: Make sure num_units == len(self.num_blocks)
num_blocks (list): Number of RSBs (Residual Steps Block) in each
downsample unit. Default: [2, 2, 2, 2]
num_steps (int): Number of steps in a RSB. Default:4
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
res_top_channels (int): Number of channels of feature from ResNet_top.
Default: 64.
expand_times (int): Times by which the in_channels are expanded in RSB.
Default:26.
Example:
>>> from mmpose.models import RSN
>>> import torch
>>> self = RSN(num_stages=2,num_units=2,num_blocks=[2,2])
>>> self.eval()
>>> inputs = torch.rand(1, 3, 511, 511)
>>> level_outputs = self.forward(inputs)
>>> for level_output in level_outputs:
... for feature in level_output:
... print(tuple(feature.shape))
...
(1, 256, 64, 64)
(1, 256, 128, 128)
(1, 256, 64, 64)
(1, 256, 128, 128)
"""
def __init__(self,
unit_channels=256,
num_stages=4,
num_units=4,
num_blocks=[2, 2, 2, 2],
num_steps=4,
norm_cfg=dict(type='BN'),
res_top_channels=64,
expand_times=26):
# Protect mutable default arguments
norm_cfg = cp.deepcopy(norm_cfg)
num_blocks = cp.deepcopy(num_blocks)
super().__init__()
self.unit_channels = unit_channels
self.num_stages = num_stages
self.num_units = num_units
self.num_blocks = num_blocks
self.num_steps = num_steps
self.norm_cfg = norm_cfg
assert self.num_stages > 0
assert self.num_steps > 1
assert self.num_units > 1
assert self.num_units == len(self.num_blocks)
self.top = ResNet_top(norm_cfg=norm_cfg)
self.multi_stage_rsn = nn.ModuleList([])
for i in range(self.num_stages):
if i == 0:
has_skip = False
else:
has_skip = True
if i != self.num_stages - 1:
gen_skip = True
gen_cross_conv = True
else:
gen_skip = False
gen_cross_conv = False
self.multi_stage_rsn.append(
Single_stage_RSN(has_skip, gen_skip, gen_cross_conv,
unit_channels, num_units, num_steps,
num_blocks, norm_cfg, res_top_channels,
expand_times))
def forward(self, x):
"""Model forward function."""
out_feats = []
skip1 = None
skip2 = None
x = self.top(x)
for i in range(self.num_stages):
out, skip1, skip2, x = self.multi_stage_rsn[i](x, skip1, skip2)
out_feats.append(out)
return out_feats
def init_weights(self, pretrained=None):
"""Initialize model weights."""
for m in self.multi_stage_rsn.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1)
elif isinstance(m, nn.Linear):
normal_init(m, std=0.01)
for m in self.top.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)