metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: srl_bert_advanced
results: []
srl_bert_advanced
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0972
- Precision: 0.7829
- Recall: 0.7799
- F1: 0.7814
- Accuracy: 0.9709
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1663 | 1.0 | 1266 | 0.1156 | 0.7707 | 0.7248 | 0.7470 | 0.9669 |
0.1124 | 2.0 | 2532 | 0.0972 | 0.7829 | 0.7799 | 0.7814 | 0.9709 |
Framework versions
- Transformers 4.39.0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2