YAML Metadata Error: "datasets[0]" with value "https://www.kaggle.com/datasets/dschettler8845/brats-2021-task1" is not valid. If possible, use a dataset id from https://hf.co/datasets.

3D Attention-based UNet for Multi-modal Brain Tumor Segmentation

Model Description

This model uses the UNet architecture, which employs a contracting path to down-sample image dimensions and an expanding path to up-sample while retaining spatial information through skip connections. 3D attention gates are introduced to generate 3D channel and spatial attention by utilizing 3D inter-channel and inter-spatial feature relationships. The input is a combined scan of 3 modalities (T1CE, T2 and T2-FLAIR) with the dimensions: 3 x L x W x no. of slices. The model attained a Dice Coefficient score of 0.9562 and a Tversky Loss of 0.0438

Dataset Description

The BRaTs (Brain Tumor Segmentation) 2021 Dataset, consisting of 1400 multi-parametric MRI (mpMRI) scans with expert neuro-radiologists' ground truth annotations, was used for this project. The dataset provides mpMRI scans in NIfTI format and includes native (T1), post-contrast T1-weighted (T1CE), T2-weighted (T2), and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) volumes, along with manually annotated GD-enhancing tumor, peritumoral edematous/invaded tissue, necrotic tumor core, and normal tissue. Checkout the dataset here.

Model Notebook

Find the notebook containing the model code on my Github.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support image-segmentation models for tf library.