|
--- |
|
license: gemma |
|
base_model: google/gemma-7b |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
datasets: |
|
- masakhane/african-ultrachat |
|
model-index: |
|
- name: zephyr-7b-gemma-sft-african-ultrachat |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# zephyr-7b-gemma-sft-african-ultrachat |
|
|
|
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the masakhane/african-ultrachat dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0802 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
[masakhane/african-ultrachat](https://huggingface.co/datasets/masakhane/african-ultrachat) |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.1942 | 1.0 | 2089 | 1.1757 | |
|
| 0.952 | 2.0 | 4178 | 1.0642 | |
|
| 0.7033 | 3.0 | 6267 | 1.0802 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.0.dev0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.15.2 |
|
|
|
|
|
### How to use |
|
|
|
``` python |
|
import torch |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text-generation", model="masakhane/zephyr-7b-gemma-sft-african-ultrachat", torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "You are a friendly chatbot who always responds in the style of a pirate", |
|
}, |
|
{"role": "user", "content": "α°αα α₯αα΄α΅ αα
?"}, |
|
] |
|
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
|
|
|
|
# <|system|> |
|
# You are a friendly chatbot who always responds in the style of a pirate<eos> |
|
# <|user|> |
|
# α°αα α₯αα΄α΅ αα
?<eos> |
|
# <|assistant|> |
|
# α°αα α₯αα΄α΅ αα
/αα½? α₯αα α α€α ααα’ α₯αα°αα αα
/αα½ α₯α α¨αα΅αααα α₯αα΄α΅ αα? |
|
``` |