mattbonnell's picture
Upload tokenizer
c0e8b58 verified
|
raw
history blame
2.78 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
base_model: facebook/wav2vec2-base
datasets:
  - transcribed_calls
metrics:
  - wer
model-index:
  - name: wav2vec2-base-wonders-phonemes
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: transcribed_calls
          type: transcribed_calls
          config: default
          split: None
          args: default
        metrics:
          - type: wer
            value: 1
            name: Wer

wav2vec2-base-wonders-phonemes

This model is a fine-tuned version of facebook/wav2vec2-base on the transcribed_calls dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9444
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.6803 3.17 200 4.2914 1.0
3.5239 4.76 300 4.0735 1.0
3.449 6.35 400 3.9754 1.0
3.9913 7.94 500 3.9428 1.0
3.3992 9.52 600 3.9585 1.0
3.3712 11.11 700 3.9996 1.0
3.3716 12.7 800 3.9949 1.0
3.9369 14.29 900 3.9352 1.0
3.3867 15.87 1000 3.9327 1.0
3.3602 17.46 1100 3.9940 1.0
3.4101 19.05 1200 3.9470 1.0
3.3484 20.63 1300 3.9482 1.0
4.4074 22.22 1400 3.9364 1.0
3.9909 23.81 1500 3.9681 1.0
3.3762 25.4 1600 3.9738 1.0
3.357 26.98 1700 3.9504 1.0
3.3729 28.57 1800 3.9444 1.0

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2