mattbonnell's picture
Upload tokenizer
39407c5 verified
|
raw
history blame
4.1 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
base_model: facebook/wav2vec2-base
datasets:
  - transcribed_calls
metrics:
  - wer
model-index:
  - name: wav2vec2-base-wonders-phonemes
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: transcribed_calls
          type: transcribed_calls
          config: default
          split: None
          args: default
        metrics:
          - type: wer
            value: 1
            name: Wer

wav2vec2-base-wonders-phonemes

This model is a fine-tuned version of facebook/wav2vec2-base on the transcribed_calls dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1008
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.5174 0.73 2000 4.1615 1.0
3.3943 1.45 4000 4.2182 1.0
3.3465 2.18 6000 4.2119 1.0
3.3343 2.9 8000 4.2471 1.0
3.3546 3.63 10000 4.0944 1.0
3.7063 4.36 12000 4.1280 1.0
3.352 5.08 14000 4.0348 1.0
3.4307 5.81 16000 4.1120 1.0
3.3496 6.54 18000 4.0892 1.0
3.3681 7.26 20000 4.1087 1.0
3.3285 7.99 22000 4.0877 1.0
3.4597 8.71 24000 4.1041 1.0
3.3582 9.44 26000 4.0729 1.0
3.3898 10.17 28000 4.0884 1.0
3.4005 10.89 30000 4.1275 1.0
3.3362 11.62 32000 4.0973 1.0
3.4801 12.35 34000 4.0916 1.0
3.3902 13.07 36000 4.0946 1.0
3.3554 13.8 38000 4.1222 1.0
3.5212 14.52 40000 4.0763 1.0
3.3771 15.25 42000 4.1347 1.0
3.333 15.98 44000 4.1217 1.0
3.3605 16.7 46000 4.1400 1.0
3.3526 17.43 48000 4.1099 1.0
3.3134 18.16 50000 4.1327 1.0
3.5681 18.88 52000 4.1114 1.0
3.3497 19.61 54000 4.1006 1.0
4.0995 20.33 56000 4.0972 1.0
3.3377 21.06 58000 4.1035 1.0
3.355 21.79 60000 4.1022 1.0
3.5084 22.51 62000 4.1252 1.0
3.3558 23.24 64000 4.1028 1.0
3.3328 23.97 66000 4.0976 1.0
3.8824 24.69 68000 4.1290 1.0
3.3406 25.42 70000 4.1173 1.0
3.9972 26.14 72000 4.1178 1.0
3.4915 26.87 74000 4.0926 1.0
3.5408 27.6 76000 4.1069 1.0
3.6864 28.32 78000 4.1030 1.0
3.326 29.05 80000 4.1058 1.0
3.3171 29.77 82000 4.1008 1.0

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0.dev20240314+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2