matthieulel's picture
End of training
2c90f9e verified
metadata
license: apache-2.0
base_model: google/vit-huge-patch14-224-in21k
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit-huge-patch14-224-in21k-finetuned-galaxy10-decals
    results: []

vit-huge-patch14-224-in21k-finetuned-galaxy10-decals

This model is a fine-tuned version of google/vit-huge-patch14-224-in21k on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4927
  • Accuracy: 0.8523
  • Precision: 0.8538
  • Recall: 0.8523
  • F1: 0.8489

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.7563 0.99 62 1.6011 0.5096 0.4694 0.5096 0.4415
1.0516 2.0 125 0.9115 0.7661 0.7679 0.7661 0.7525
0.8551 2.99 187 0.7590 0.7706 0.7860 0.7706 0.7653
0.6701 4.0 250 0.6253 0.8095 0.8013 0.8095 0.7985
0.6112 4.99 312 0.6058 0.8095 0.8120 0.8095 0.8083
0.6109 6.0 375 0.5428 0.8292 0.8353 0.8292 0.8196
0.5643 6.99 437 0.5230 0.8343 0.8350 0.8343 0.8332
0.5204 8.0 500 0.5010 0.8365 0.8391 0.8365 0.8344
0.4918 8.99 562 0.5000 0.8365 0.8419 0.8365 0.8348
0.4673 10.0 625 0.4949 0.8410 0.8394 0.8410 0.8371
0.4569 10.99 687 0.4803 0.8467 0.8451 0.8467 0.8446
0.4164 12.0 750 0.5012 0.8326 0.8314 0.8326 0.8295
0.424 12.99 812 0.4940 0.8410 0.8454 0.8410 0.8382
0.4045 14.0 875 0.4927 0.8523 0.8538 0.8523 0.8489
0.3651 14.99 937 0.4809 0.8416 0.8396 0.8416 0.8403
0.3512 16.0 1000 0.4955 0.8331 0.8306 0.8331 0.8307
0.2922 16.99 1062 0.5103 0.8399 0.8357 0.8399 0.8359
0.3212 18.0 1125 0.5197 0.8439 0.8408 0.8439 0.8412
0.3171 18.99 1187 0.5253 0.8348 0.8335 0.8348 0.8335
0.2896 20.0 1250 0.5303 0.8467 0.8456 0.8467 0.8438
0.271 20.99 1312 0.5571 0.8393 0.8391 0.8393 0.8366
0.2996 22.0 1375 0.5468 0.8422 0.8411 0.8422 0.8404
0.2663 22.99 1437 0.5620 0.8405 0.8393 0.8405 0.8393
0.2513 24.0 1500 0.5338 0.8467 0.8448 0.8467 0.8450
0.2453 24.99 1562 0.5562 0.8484 0.8452 0.8484 0.8446
0.2237 26.0 1625 0.5619 0.8467 0.8450 0.8467 0.8442
0.2296 26.99 1687 0.5751 0.8484 0.8496 0.8484 0.8464
0.2479 28.0 1750 0.5782 0.8461 0.8441 0.8461 0.8431
0.2207 28.99 1812 0.5746 0.8410 0.8381 0.8410 0.8378
0.2125 29.76 1860 0.5754 0.8416 0.8393 0.8416 0.8383

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1