File size: 1,559 Bytes
082db7d 4f523bd 082db7d 7142c7f 082db7d 7142c7f 082db7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
license: mit
tags:
- vision
- image-segmentation
widget:
- src: https://images.unsplash.com/photo-1643310325061-2beef64926a5?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8Nnx8cmFjb29uc3xlbnwwfHwwfHw%3D&w=1000&q=80
example_title: Person
- src: https://freerangestock.com/sample/139043/young-man-standing-and-leaning-on-car.jpg
example_title: Person
datasets:
- mattmdjaga/human_parsing_dataset
---
# Segformer B0 fine-tuned for clothes segmentation
SegFormer model fine-tuned on [ATR dataset](https://github.com/lemondan/HumanParsing-Dataset) for clothes segmentation.
The dataset on hugging face is called "mattmdjaga/human_parsing_dataset".
```python
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
from PIL import Image
import requests
import matplotlib.pyplot as plt
import torch.nn as nn
extractor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b0_clothes")
model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b0_clothes")
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"
image = Image.open(requests.get(url, stream=True).raw)
inputs = extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
plt.imshow(pred_seg)
``` |