mattritchey/83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit-Q4_K_M-GGUF
This model was converted to GGUF format from FlofloB/83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo mattritchey/83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit-Q4_K_M-GGUF --hf-file 83k_continued_pretraining_qwen2.5-0.5b-instruct_unsloth_merged_16bit-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo mattritchey/83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit-Q4_K_M-GGUF --hf-file 83k_continued_pretraining_qwen2.5-0.5b-instruct_unsloth_merged_16bit-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo mattritchey/83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit-Q4_K_M-GGUF --hf-file 83k_continued_pretraining_qwen2.5-0.5b-instruct_unsloth_merged_16bit-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo mattritchey/83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit-Q4_K_M-GGUF --hf-file 83k_continued_pretraining_qwen2.5-0.5b-instruct_unsloth_merged_16bit-q4_k_m.gguf -c 2048
- Downloads last month
- 0
Model tree for mattritchey/83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit-Q4_K_M-GGUF
Dataset used to train mattritchey/83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit-Q4_K_M-GGUF
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard28.690
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard8.130
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard0.000
- acc_norm on GPQA (0-shot)Open LLM Leaderboard3.130
- acc_norm on MuSR (0-shot)Open LLM Leaderboard1.420
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard6.170