metadata
license: mit
datasets:
- ethical-spectacle/biased-corpus
language:
- en
metrics:
- f1(0.8998)
- precision
- recall()
library_name: transformers
co2_eq_emissions:
emissions: 10
source: Code Carbon
training_type: fine-tuning
geographical_location: Albany, New York
hardware_used: T4
base_model:
- google-bert/bert-base-uncased
pipeline_tag: text-classification
tags:
- Social Bias
How to Use
classifier = pipeline("text-classification", model="maximuspowers/bias-type-classifier") // pass in return_all_scores=True for multi-label
result = classifier("Tall people are so clumsy")
//Example Result
[
{
"label": "physical",
"score": 0.9972801208496094
}
]
This model was trained on a synthetic dataset of biased statements and questions, generated by Mistal 7B as part of the GUS-Net paper.
Model Performance:
Label | F1 Score | Precision | Recall |
---|---|---|---|
Macro Average | 0.8998 | 0.9213 | 0.8807 |
racial | 0.8613 | 0.9262 | 0.8049 |
religious | 0.9655 | 0.9716 | 0.9595 |
gender | 0.9160 | 0.9099 | 0.9223 |
age | 0.9185 | 0.9683 | 0.8737 |
nationality | 0.9083 | 0.9053 | 0.9113 |
sexuality | 0.9304 | 0.9484 | 0.9131 |
socioeconomic | 0.8273 | 0.8727 | 0.7864 |
educational | 0.8791 | 0.9091 | 0.8511 |
disability | 0.8713 | 0.8762 | 0.8665 |
political | 0.9127 | 0.8914 | 0.9351 |
physical | 0.9069 | 0.9547 | 0.8635 |
Training Params:
Learning Rate: 5e-5 Batch Size: 16 Epochs: 3