Update README.md
Browse files
README.md
CHANGED
@@ -1,56 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
1 |
+
---
|
2 |
+
library_name: custom
|
3 |
+
tags:
|
4 |
+
- robotics
|
5 |
+
- diffusion
|
6 |
+
- mixture-of-experts
|
7 |
+
- multi-modal
|
8 |
+
license: mit
|
9 |
+
datasets:
|
10 |
+
- CALVIN
|
11 |
+
languages:
|
12 |
+
- en
|
13 |
+
pipeline_tag: robotics
|
14 |
+
---
|
15 |
+
# MoDE (Mixture of Denoising Experts) Diffusion Policy
|
16 |
|
17 |
+
## Model Description
|
18 |
+
|
19 |
+
<div style="text-align: center">
|
20 |
+
<img src="MoDE_Figure_1.png" width="800px"/>
|
21 |
+
</div>
|
22 |
+
|
23 |
+
- [Github Link](https://github.com/intuitive-robots/MoDE_Diffusion_Policy)
|
24 |
+
- [Project Page](https://mbreuss.github.io/MoDE_Diffusion_Policy/)
|
25 |
+
|
26 |
+
This model implements a Mixture of Diffusion Experts architecture for robotic manipulation, combining transformer-based backbone with noise-only expert routing. For faster inference, we can precache the chosen expert for each timestep to reduce computation time.
|
27 |
+
|
28 |
+
The model has been pretrained on a subset of OXE for 300k steps and finetuned for downstream tasks on the CALVIN/LIBERO dataset.
|
29 |
+
|
30 |
+
## Model Details
|
31 |
+
|
32 |
+
### Architecture
|
33 |
+
- **Base Architecture**: MoDE with custom Mixture of Experts Transformer
|
34 |
+
- **Vision Encoder**: ResNet-50 with FiLM conditioning finetuned from ImageNet
|
35 |
+
- **EMA**: Enabled
|
36 |
+
- **Action Window Size**: 10
|
37 |
+
- **Sampling Steps**: 5 (optimal for performance)
|
38 |
+
- **Sampler Type**: DDIM
|
39 |
+
|
40 |
+
### Input/Output Specifications
|
41 |
+
|
42 |
+
#### Inputs
|
43 |
+
- RGB Static Camera: `(B, T, 3, H, W)` tensor
|
44 |
+
- RGB Gripper Camera: `(B, T, 3, H, W)` tensor
|
45 |
+
- Language Instructions: Text strings
|
46 |
+
|
47 |
+
#### Outputs
|
48 |
+
- Action Space: `(B, T, 7)` tensor representing delta EEF actions
|
49 |
+
|
50 |
+
## Usage
|
51 |
+
|
52 |
+
```python
|
53 |
+
obs = {
|
54 |
+
"rgb_obs": {
|
55 |
+
"rgb_static": static_image,
|
56 |
+
"rgb_gripper": gripper_image
|
57 |
+
}
|
58 |
+
}
|
59 |
+
goal = {"lang_text": "pick up the blue cube"}
|
60 |
+
action = model.step(obs, goal)
|
61 |
+
```
|
62 |
+
|
63 |
+
## Training Details
|
64 |
+
|
65 |
+
### Configuration
|
66 |
+
- **Optimizer**: AdamW
|
67 |
+
- **Learning Rate**: 0.0001
|
68 |
+
- **Weight Decay**: 0.05
|
69 |
+
|
70 |
+
## License
|
71 |
+
This model is released under the MIT license.
|