Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
test2 / configs /foodnet /README.md
mccaly's picture
Upload 660 files
b13b124
|
raw
history blame
1.77 kB
# Baseline for FoodSeg103
## Introduction
[ALGORITHM]
```latex
@article{xu2021foodseg,
title={A Large-Scale Benchmark for Food Image Segmentation},
author={Wu, Xiongwei and Fu, Xin and Liu, Ying and Lim, Ee-Peng and Hoi, Steven CH and Sun, Qianru},
journal={arXiv preprint arXiv:XXXX.XXXX},
year={2021}
}
@inproceedings{huang2018ccnet,
title={CCNet: Criss-Cross Attention for Semantic Segmentation},
author={Huang, Zilong and Wang, Xinggang and Huang, Lichao and Huang, Chang and Wei, Yunchao and Liu, Wenyu},
booktitle={ICCV},
year={2019}
}
@inproceedings{Kirillov_2019,
title={Panoptic Feature Pyramid Networks},
author={Kirillov, Alexander and Girshick, Ross and He, Kaiming and Dollar, Piotr},
booktitle={CVPR},
year={2019},
}
@inproceedings{SETR,
title={Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers},
author={Zheng, Sixiao and Lu, Jiachen and Zhao, Hengshuang and Zhu, Xiatian and Luo, Zekun and Wang, Yabiao and Fu, Yanwei and Feng, Jianfeng and Xiang, Tao and Torr, Philip H.S. and Zhang, Li},
booktitle={CVPR},
year={2021}
}
@article{liu2021Swin,
title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
journal={arXiv preprint arXiv:2103.14030},
year={2021}
}
@article{wang2021pyramid,
title={Pyramid vision transformer: A versatile backbone for dense prediction without convolutions},
author={Wang, Wenhai and Xie, Enze and Li, Xiang and Fan, Deng-Ping and Song, Kaitao and Liang, Ding and Lu, Tong and Luo, Ping and Shao, Ling},
journal={arXiv preprint arXiv:2102.12122},
year={2021}
}
```