single_label_N_max_long_training

This model is a fine-tuned version of distilbert-base-uncased on the squad dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8288

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
3.0568 1.0 674 1.9993
1.6024 2.0 1348 1.8497
1.0196 3.0 2022 1.9178
0.7622 4.0 2696 2.0412
0.6066 5.0 3370 2.2523
0.4136 6.0 4044 2.3845
0.3113 7.0 4718 2.5712
0.2777 8.0 5392 2.6790
0.208 9.0 6066 2.7464
0.1749 10.0 6740 2.8288

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.1
  • Tokenizers 0.12.1
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train mcurmei/single_label_N_max_long_training