|
--- |
|
license: mit |
|
library_name: transformers |
|
datasets: |
|
- md-nishat-008/Mojo-Corpus |
|
- md-nishat-008/Mojo-SFT |
|
- md-nishat-008/Mojo-mSFT |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
<div align="center"> |
|
<h1>๐ฅ Mojo-Coder ๐ฅ</h1> |
|
<em>State-of-the-art Language Model for Mojo Programming</em> |
|
</div> |
|
|
|
|
|
<div align="center"> |
|
<table><tr> |
|
<td><a href="https://arxiv.org/abs/2410.17736"><img src="https://img.shields.io/badge/arXiv-Read_Paper-blue?style=for-the-badge&logo=arxiv" /></a></td> |
|
<td><a href="mailto:mraihan2@gmu.edu"><img src="https://img.shields.io/badge/Email-Contact_Us-blue?style=for-the-badge&logo=gmail" /></a></td> |
|
</tr></table> |
|
</div> |
|
|
|
|
|
|
|
<div align="center"> |
|
<h2>๐ฏ Background and Motivation</h2> |
|
</div> |
|
|
|
Mojo programming language, developed by Modular, has emerged as a game-changing technology in high-performance computing and AI development. Despite its growing popularity and impressive capabilities (up to 68,000x faster than Python!), existing LLMs struggle with Mojo code generation. Mojo-Coder addresses this gap by providing specialized support for Mojo programming, built upon the robust architecture of [CodeGemma-7B-IT](https://huggingface.co/google/codegemma-7b-it/). |
|
|
|
<div align="center"> |
|
<h2>๐ค Model Information</h2> |
|
</div> |
|
|
|
Mojo-Coder transforms natural language instructions into optimized Mojo code, supporting multiple languages (English, German, French, Spanish, and Bangla) while maintaining high-quality code generation capabilities. |
|
|
|
<div align="center"> |
|
<h2>๐ Description</h2> |
|
</div> |
|
|
|
The Mojo-Coder family consists of three specialized 7B-parameter models, each built on CodeGemma's architecture: |
|
| | <h3><a href="https://huggingface.co/md-nishat-008/mojo-coder" style="color: #0969DA;">mojo-coder</a> ๐ฅ</h3> | <h3><a href="https://huggingface.co/md-nishat-008/mojo-coder-it" style="color: #0969DA;">mojo-coder-it</a> ๐</h3> | <h3><a href="https://huggingface.co/md-nishat-008/mojo-coder-it-m" style="color: #0969DA;">mojo-coder-it-m</a> โญ</h3> | |
|
|---------------------------|:---:|:---:|:---:| |
|
| ๐ Code Completion | โ
| โ
| โ
| |
|
| ๐ก NL โ Code Generation | | โ
| โ
| |
|
| ๐ Multilingual Support | | | โ
| |
|
| ๐ Instruction Following | | โ
| โ
| |
|
|
|
<div align="center"> |
|
<h2>๐ Sample Usage</h2> |
|
</div> |
|
|
|
Choose the model that best fits your needs: |
|
- For basic Mojo code completion: [mojo-coder](https://huggingface.co/md-nishat-008/mojo-coder) |
|
- For English instruction-based code generation: [mojo-coder-it](https://huggingface.co/md-nishat-008/mojo-coder-it) |
|
- For multilingual support: [mojo-coder-it-m](https://huggingface.co/md-nishat-008/mojo-coder-it-m) |
|
|
|
Notably, our models significantly outperform current state-of-the-art models including GPT-4o and Claude-3.5-Sonnet on the HumanEval-Mojo benchmark. |
|
|
|
|
|
<div style="color: red; text-align: center; padding: 10px; margin: 20px 0; border: 2px solid red; border-radius: 5px;"> |
|
<strong>โ ๏ธ IMPORTANT: When using the model, you MUST explicitly mention "Mojo" in your prompts (e.g., "Write a Mojo function to...", "Create Mojo code that...") otherwise the model may not generate Mojo code!</strong> |
|
</div> |
|
|
|
#### For Code Generation |
|
|
|
```python |
|
from transformers import GemmaTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("md-nishat-008/Mojo-Coder-it") |
|
model = AutoModelForCausalLM.from_pretrained("md-nishat-008/Mojo-Coder-it") |
|
|
|
input_text = "Write me a Mojo function to calculate the nth fibonacci number." |
|
input_ids = tokenizer(input_text, return_tensors="pt") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
#### Chat Template |
|
|
|
The instruction-tuned models use a chat template that must be adhered to for conversational use. |
|
The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. |
|
|
|
Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: |
|
|
|
```py |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("md-nishat-008/Mojo-Coder-it") |
|
model = AutoModelForCausalLM.from_pretrained("md-nishat-008/Mojo-Coder-it") |
|
|
|
chat = [{"role": "user", "content": "Write a function that calculates factorial of a number in Mojo"}] |
|
inputs = tokenizer.apply_chat_template(chat, tokenize=True, return_tensors="pt").to("cuda") |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
inputs=inputs, |
|
max_new_tokens=1000, |
|
temperature=0.7, |
|
top_p=0.95, |
|
pad_token_id=tokenizer.eos_token_id, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
At this point, the prompt contains the following text: |
|
|
|
``` |
|
<bos><start_of_turn>user |
|
Write a hello world program in Mojo<end_of_turn> |
|
<start_of_turn>model |
|
``` |
|
|
|
As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity |
|
(either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with |
|
the `<end_of_turn>` token. |
|
|
|
You can follow this format to build the prompt manually, if you need to do it without the tokenizer's |
|
chat template. |
|
|
|
After the prompt is ready, generation can be performed like this: |
|
|
|
```py |
|
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") |
|
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) |
|
``` |
|
|
|
<div align="center"> |
|
<h2>โ๏ธ Inputs and Outputs</h2> |
|
</div> |
|
|
|
**Inputs**: |
|
- For base model (mojo-coder): code prefix and/or suffix for Mojo code completion |
|
- For instruction-tuned models (mojo-coder-it & mojo-coder-it-m): natural language prompts/instructions |
|
|
|
<p style="color: red;"><strong>Note: In prompts, you must explicitly mention "Mojo" (e.g., "Write a Mojo function to...", "Write Mojo code to...") otherwise the models may not generate Mojo code.</strong></p> |
|
|
|
**Outputs**: |
|
- For all variants: Mojo code snippets and natural language responses |
|
- Additional explanations and documentation when requested |
|
|
|
<div align="center"> |
|
<h2>๐ Model Data</h2> |
|
</div> |
|
|
|
### Training Dataset |
|
|
|
Using [CodeGemma-7B-IT](https://huggingface.co/google/codegemma-7b-it/) as our base model, we further trained on: |
|
- [Mojo-Corpus](https://huggingface.co/datasets/md-nishat-008/Mojo_Corpus): 6.5M tokens of curated Mojo code from public repositories |
|
- [Mojo-SFT](https://huggingface.co/datasets/md-nishat-008/Mojo_SFT): 3,200 instruction-code pairs for English |
|
- [Mojo-mSFT](https://huggingface.co/datasets/md-nishat-008/Mojo_mSFT): Multilingual instruction-code pairs in 5 languages |
|
|
|
### Training Data Processing |
|
|
|
The following data pre-processing techniques were applied: |
|
- Rigorous filtering pipeline (F1-F6) to ensure code quality |
|
- Apache 2.0 license compliance |
|
- Language detection using fastText |
|
- Duplicate removal and content validation |
|
- Expert review for instruction-code pairs |
|
|
|
<div align="center"> |
|
<h2>๐ Evaluation Information</h2> |
|
</div> |
|
|
|
### Evaluation Approach |
|
|
|
We evaluate Mojo-Coder on: |
|
- [HumanEval-Mojo](https://huggingface.co/datasets/md-nishat-008/HumanEval-Mojo): First benchmark for Mojo code generation |
|
- Multi-language instruction following |
|
- Code quality and execution success |
|
|
|
### Evaluation Results |
|
|
|
#### Code Generation Benchmarks (Pass@1) |
|
|
|
| Model | HumanEval-Mojo | |
|
|-------|----------------| |
|
| GPT-4o | 25.5% | |
|
| Claude-3.5-Sonnet | 39.8% | |
|
| mojo-coder | 36.7% | |
|
| mojo-coder-it-m | 61.5% | |
|
| mojo-coder-it | 66.4% | |
|
|
|
<div align="center"> |
|
<h2>โ ๏ธ Limitations and Usage</h2> |
|
</div> |
|
|
|
### Intended Usage |
|
- Mojo code completion and generation |
|
- Multi-language instruction following |
|
- Code documentation and explanation |
|
- Educational support for Mojo programming |
|
|
|
### Known Limitations |
|
- Limited to Mojo programming language |
|
- Requires explicit mention of "Mojo" in prompts |
|
- Performance may vary with complex algorithms |
|
- May occasionally generate Python-like syntax |
|
- Based on data available up to 2024 |
|
|
|
### Ethical Considerations |
|
The model is designed for: |
|
- Educational and development purposes |
|
- Open-source contribution to Mojo ecosystem |
|
- Supporting multilingual access to Mojo programming |
|
|
|
Code should be reviewed and tested before production use, especially for performance-critical applications. |
|
|
|
|
|
|
|
<div align="center"> |
|
<h2>๐ Citation</h2> |
|
</div> |
|
|
|
If you find our work helpful, please consider citing our paper: |
|
|
|
<div style="background-color: #f6f8fa; padding: 20px; border-radius: 5px; margin: 10px 0;"> |
|
<p style="margin-bottom: 10px;"><strong>MojoBench: Language Modeling and Benchmarks for Mojo</strong></p> |
|
|
|
```bibtex |
|
@inproceedings{Raihan2024MojoBenchLM, |
|
title = {MojoBench: Language Modeling and Benchmarks for Mojo}, |
|
author = {Raihan, Nishat and Santos, Joanna C. S. and Zampieri, Marcos}, |
|
year = {2024}, |
|
url = {https://api.semanticscholar.org/CorpusID:273532552} |
|
} |
|
``` |
|
|