mdosama39's picture
End of training
ce133df
metadata
license: mit
base_model: ai4bharat/indic-bert
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: indic-bert-FakeNews-Dravidiant
    results: []

indic-bert-FakeNews-Dravidiant

This model is a fine-tuned version of ai4bharat/indic-bert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6230
  • Accuracy: 0.6822
  • Weighted f1 score: 0.6816
  • Macro f1 score: 0.6816

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted f1 score Macro f1 score
1.0142 1.0 204 0.7823 0.5509 0.5402 0.5405
0.7202 2.0 408 0.6967 0.5902 0.5747 0.5744
0.6758 3.0 612 0.6730 0.6319 0.6224 0.6221
0.6471 4.0 816 0.6547 0.6417 0.6336 0.6334
0.6221 5.0 1020 0.6396 0.6663 0.6646 0.6645
0.6005 6.0 1224 0.6322 0.6724 0.6723 0.6723
0.5801 7.0 1428 0.6385 0.6601 0.6530 0.6528
0.5613 8.0 1632 0.6249 0.6810 0.6797 0.6796
0.5534 9.0 1836 0.6231 0.6834 0.6831 0.6831
0.5428 10.0 2040 0.6230 0.6822 0.6816 0.6816

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.0
  • Datasets 2.11.0
  • Tokenizers 0.14.1