Edit model card

logo

About

This is a TrOCR model for medieval Cursiva. The base model was microsoft/trocr-base-handwritten. The model was then finetuned to Caroline: medieval-data/trocr-medieval-latin-caroline. From a saved checkpoint, the model was further finetuned to Cursiva.

The dataset used for training was CATMuS.

The model has not been formally tested. Preliminary examination indicates that further finetuning is needed.

Finetuning was done with finetune.py found in this repository.

Usage

from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import requests

# load image from the IAM database
https://huggingface.co/medieval-data/trocr-medieval-cursiva/resolve/main/images/cursiva-1.png
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")

processor = TrOCRProcessor.from_pretrained('medieval-data/trocr-medieval-cursiva')
model = VisionEncoderDecoderModel.from_pretrained('medieval-data/trocr-medieval-cursiva')
pixel_values = processor(images=image, return_tensors="pt").pixel_values

generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

BibTeX entry and citation info

TrOCR Paper

@misc{li2021trocr,
      title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, 
      author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
      year={2021},
      eprint={2109.10282},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

CATMuS Paper

@unpublished{clerice:hal-04453952,
  TITLE = {{CATMuS Medieval: A multilingual large-scale cross-century dataset in Latin script for handwritten text recognition and beyond}},
  AUTHOR = {Cl{\'e}rice, Thibault and Pinche, Ariane and Vlachou-Efstathiou, Malamatenia and Chagu{\'e}, Alix and Camps, Jean-Baptiste and Gille-Levenson, Matthias and Brisville-Fertin, Olivier and Fischer, Franz and Gervers, Michaels and Boutreux, Agn{\`e}s and Manton, Avery and Gabay, Simon and O'Connor, Patricia and Haverals, Wouter and Kestemont, Mike and Vandyck, Caroline and Kiessling, Benjamin},
  URL = {https://inria.hal.science/hal-04453952},
  NOTE = {working paper or preprint},
  YEAR = {2024},
  MONTH = Feb,
  KEYWORDS = {Historical sources ; medieval manuscripts ; Latin scripts ; benchmarking dataset ; multilingual ; handwritten text recognition},
  PDF = {https://inria.hal.science/hal-04453952/file/ICDAR24___CATMUS_Medieval-1.pdf},
  HAL_ID = {hal-04453952},
  HAL_VERSION = {v1},
}
Downloads last month
20
Safetensors
Model size
334M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train medieval-data/trocr-medieval-cursiva

Spaces using medieval-data/trocr-medieval-cursiva 2

Collection including medieval-data/trocr-medieval-cursiva