wav2vec2-xls-r-1b-portuguese-casa-civil-030124

This model is a fine-tuned version of jonatasgrosman/wav2vec2-xls-r-1b-portuguese on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5479
  • Wer: 0.1310

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
28.5913 2.0 100 1.2903 0.1460
1.1869 4.0 200 0.6083 0.1537
0.8173 6.0 300 0.7054 0.2217
0.7882 8.0 400 0.7377 0.2711
0.6783 10.0 500 0.7785 0.2321
0.5541 12.0 600 0.6881 0.2394
0.5104 14.0 700 0.7285 0.2270
0.344 16.0 800 0.6114 0.1991
0.304 18.0 900 0.5559 0.1906
0.2315 20.0 1000 0.6833 0.1727
0.2144 22.0 1100 0.5632 0.1695
0.1725 24.0 1200 0.5597 0.1463
0.1492 26.0 1300 0.5356 0.1472
0.118 28.0 1400 0.5499 0.1344
0.1083 30.0 1500 0.5479 0.1310

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
25
Safetensors
Model size
963M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for medtalkai/wav2vec2-xls-r-1b-portuguese-casa-civil-030124

Finetuned
(3)
this model