|
--- |
|
language: ar |
|
license: apache-2.0 |
|
datasets: |
|
- AQMAR |
|
- ANERcorp |
|
thumbnail: https://www.informatik.hu-berlin.de/en/forschung-en/gebiete/ml-en/resolveuid/a6f82e0d7fa446a59c902cac4cafa9cb/@@images/image/preview |
|
tags: |
|
- flair |
|
- Text Classification |
|
- token-classification |
|
- sequence-tagger-model |
|
metrics: |
|
- f1 |
|
widget: |
|
- text: "اختارها خيري بشارة كممثلة، دون سابقة معرفة أو تجربة تمثيلية، لتقف بجانب فاتن حمامة في فيلم «يوم مر ويوم حلو» (1988) وهي ما زالت شابة لم تتخطَ عامها الثاني" |
|
--- |
|
# Arabic NER Model for AQMAR dataset |
|
Training was conducted over 86 epochs, using a linear decaying learning rate of 2e-05, starting from 0.3 and a batch size of 48 with fastText and Flair forward and backward embeddings. |
|
|
|
|
|
## Original Dataset: |
|
- [AQMAR](http://www.cs.cmu.edu/~ark/ArabicNER/) |
|
|
|
## Results: |
|
- F1-score (micro) 0.9323 |
|
- F1-score (macro) 0.9272 |
|
|
|
| | True Posititves | False Positives | False Negatives | Precision | Recall | class-F1 | |
|
|------|-----|----|----|---------|--------|----------| |
|
| LOC | 164 | 7 | 13 | 0.9591 | 0.9266 | 0.9425 | |
|
| MISC | 398 | 22 | 37 | 0.9476 | 0.9149 | 0.9310 | |
|
| ORG | 65 | 6 | 9 | 0.9155 | 0.8784 | 0.8966 | |
|
| PER | 199 | 13 | 13 | 0.9387 | 0.9387 | 0.9387 | |
|
|
|
--- |
|
|
|
# Usage |
|
```python |
|
from flair.data import Sentence |
|
from flair.models import SequenceTagger |
|
import pyarabic.araby as araby |
|
from icecream import ic |
|
|
|
arTagger = SequenceTagger.load('megantosh/flair-arabic-MSA-aqmar') |
|
|
|
sentence = Sentence('George Washington went to Washington .') |
|
arSentence = Sentence('عمرو عادلي أستاذ للاقتصاد السياسي المساعد في الجامعة الأمريكية بالقاهرة .') |
|
|
|
|
|
# predict NER tags |
|
tagger.predict(sentence) |
|
arTagger.predict(arSentence) |
|
|
|
# print sentence with predicted tags |
|
ic(sentence.to_tagged_string) |
|
ic(arSentence.to_tagged_string) |
|
|
|
``` |
|
|
|
# Example |
|
see an example from a [similar NER model in Flair](https://huggingface.co/megantosh/flair-arabic-multi-ner) |
|
|
|
# Model Configuration |
|
```python |
|
(embeddings): StackedEmbeddings( |
|
(list_embedding_0): WordEmbeddings('ar') |
|
(list_embedding_1): FlairEmbeddings( |
|
(lm): LanguageModel( |
|
(drop): Dropout(p=0.1, inplace=False) |
|
(encoder): Embedding(7125, 100) |
|
(rnn): LSTM(100, 2048) |
|
(decoder): Linear(in_features=2048, out_features=7125, bias=True) |
|
) |
|
) |
|
(list_embedding_2): FlairEmbeddings( |
|
(lm): LanguageModel( |
|
(drop): Dropout(p=0.1, inplace=False) |
|
(encoder): Embedding(7125, 100) |
|
(rnn): LSTM(100, 2048) |
|
(decoder): Linear(in_features=2048, out_features=7125, bias=True) |
|
) |
|
) |
|
) |
|
(word_dropout): WordDropout(p=0.05) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(embedding2nn): Linear(in_features=4396, out_features=4396, bias=True) |
|
(rnn): LSTM(4396, 256, batch_first=True, bidirectional=True) |
|
(linear): Linear(in_features=512, out_features=14, bias=True) |
|
(beta): 1.0 |
|
(weights): None |
|
(weight_tensor) None |
|
)" |
|
2021-03-31 22:19:50,654 ---------------------------------------------------------------------------------------------------- |
|
2021-03-31 22:19:50,654 Corpus: "Corpus: 3025 train + 336 dev + 373 test sentences" |
|
2021-03-31 22:19:50,654 ---------------------------------------------------------------------------------------------------- |
|
2021-03-31 22:19:50,654 Parameters: |
|
2021-03-31 22:19:50,654 - learning_rate: "0.3" |
|
2021-03-31 22:19:50,654 - mini_batch_size: "48" |
|
2021-03-31 22:19:50,654 - patience: "3" |
|
2021-03-31 22:19:50,654 - anneal_factor: "0.5" |
|
2021-03-31 22:19:50,654 - max_epochs: "150" |
|
2021-03-31 22:19:50,654 - shuffle: "True" |
|
2021-03-31 22:19:50,654 - train_with_dev: "False" |
|
2021-03-31 22:19:50,654 - batch_growth_annealing: "False" |
|
2021-03-31 22:19:50,655 ------------------------------------ |
|
``` |
|
Due to some formatting errors, your code might appear like [this](https://ibb.co/ky20Lnq). |
|
|
|
# Citation |
|
*if you use this model in your work, please consider citing this work:* |
|
```latex |
|
@unpublished{MMHU21 |
|
author = "M. Megahed", |
|
title = "Sequence Labeling Architectures in Diglossia", |
|
note = "In Review", |
|
} |
|
``` |