|
--- |
|
language: ar |
|
license: apache-2.0 |
|
datasets: |
|
- AQMAR |
|
--- |
|
# Arabic NER Model using Flair Embeddings |
|
Training was conducted over 94 epochs, using a linear decaying learning rate of 2e-05, and a total batch size of 32. |
|
11 |
|
12 |
|
|
|
Results: |
|
- F1-score (micro) 0.8666 |
|
- F1-score (macro) 0.8488 |
|
|
|
By class: |
|
LOC tp: 539 - fp: 51 - fn: 68 - precision: 0.9136 - recall: 0.8880 - f1-score: 0.9006 |
|
MISC tp: 408 - fp: 57 - fn: 89 - precision: 0.8774 - recall: 0.8209 - f1-score: 0.8482 |
|
ORG tp: 167 - fp: 43 - fn: 64 - precision: 0.7952 - recall: 0.7229 - f1-score: 0.7574 |
|
PER tp: 501 - fp: 65 - fn: 60 - precision: 0.8852 - recall: 0.8930 - f1-score: 0.8891 |
|
|
|
|
|
--- |
|
|
|
``` |
|
2020-10-27 12:05:47,801 Model: "SequenceTagger( |
|
(embeddings): StackedEmbeddings( |
|
(list_embedding_0): WordEmbeddings('glove') |
|
(list_embedding_1): FlairEmbeddings( |
|
(lm): LanguageModel( |
|
(drop): Dropout(p=0.1, inplace=False) |
|
(encoder): Embedding(7125, 100) |
|
(rnn): LSTM(100, 2048) |
|
(decoder): Linear(in_features=2048, out_features=7125, bias=True) |
|
) |
|
) |
|
(list_embedding_2): FlairEmbeddings( |
|
(lm): LanguageModel( |
|
(drop): Dropout(p=0.1, inplace=False) |
|
(encoder): Embedding(7125, 100) |
|
(rnn): LSTM(100, 2048) |
|
(decoder): Linear(in_features=2048, out_features=7125, bias=True) |
|
) |
|
) |
|
) |
|
(word_dropout): WordDropout(p=0.05) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(embedding2nn): Linear(in_features=4196, out_features=4196, bias=True) |
|
(rnn): LSTM(4196, 256, batch_first=True, bidirectional=True) |
|
(linear): Linear(in_features=512, out_features=15, bias=True) |
|
(beta): 1.0 |
|
(weights): None |
|
(weight_tensor) None |
|
|
|
``` |