Model Card for Fine-Tune Lama 3.1

Model Name: Fine-Tuned Lama 3.1

Model Description: Fine-Tuned Lama 3.1 is a customized version of Meta’s Llama-3.1 (8B parameters) model, fine-tuned on task-specific datasets using LoRA (Low-Rank Adaptation) and quantized to 4-bit precision for efficient inference. This model has been fine-tuned for improved performance on causal language modeling tasks, with optimized generation parameters for concise, context-aware responses.

Model Details:

•	Model Type: Causal Language Model (LLM)
•	Base Model: Meta-Llama-3.1-8B
•	Architecture: Transformer-based autoregressive model
•	Quantization: 4-bit precision using BitsAndBytes for memory efficiency
•	Training Method: LoRA fine-tuning
•	Task: General language generation, conversation, text completion

Use Cases:

•	Conversational AI assistants
•	Text completion
•	Response generation in chatbots
•	Any task that involves understanding and generating human-like text

Fine-Tuning Process:

•	LoRA Configuration:
•	r=8, lora_alpha=16, lora_dropout=0.05
•	This setup introduces efficient low-rank adaptation to improve model training with a smaller number of parameters.
•	Training Arguments:
•	Batch size per device: 4
•	Learning rate: 2e-4
•	Training epochs: 3
•	Gradient accumulation: 16 steps
•	Optimizer: paged_adamw_32bit
•	Fine-tuning on custom dataset using Trainer with push to Hugging Face Hub.
•	Quantization:
•	Load in 4-bit precision (bnb_4bit), quantization type: nf4
•	The model is optimized for efficient inference using float16 compute precision.

Dataset:

The fine-tuning dataset contains curated conversations and responses that focus on natural language tasks such as summarization, paraphrasing, and conversation, structured as pairs of prompts and responses.

Sample data snippet:

Prompt: "Time segment 0 to 4 seconds: The sun rises over a quiet beach." Response: ["sunrise beach", "quiet shoreline", "rising sun"]

Inference and Generation:

•	Generation Config:
•	penalty_alpha=0.6
•	do_sample=True
•	top_k=5
•	temperature=0.5
•	repetition_penalty=1.2
•	max_new_tokens=60

This configuration ensures coherent and creative generation within a controlled range.

Performance:

•	Hardware Requirements:
•	8-bit/4-bit quantization allows the model to run on consumer-grade GPUs with efficient memory utilization.
•	Inference Time:
•	Response generation time varies based on prompt complexity but typically completes within 2-4 seconds on a standard GPU setup.

Limitations and Ethical Considerations:

•	The model might generate biased or inappropriate content as it is trained on publicly available datasets and could reflect biases inherent in those datasets.
•	Proper filtering and human supervision are recommended for sensitive use cases, such as those involving ethical or safety-critical scenarios.

Future Work:

The model can be further fine-tuned with domain-specific datasets or adapted for tasks requiring more nuanced understanding or specialized knowledge.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for mehdibukhari/llama3.18B-Fine-tunedByMehdi

Adapter
(163)
this model