menevsem's picture
Create params.yaml
3652f8d
mode: "train"
pretrained_model_name: "facebook/wav2vec2-base-960h"
freeze_pretrained: True
output_dir: "out/model_asr_base_alldata"
dataset_script: "dataset/asr_dataset.py"
part_name: "nmsqa_all_asr"
window_size: 321
learning_rate: 0.0002
group_by_length: True
per_device_train_batch_size: 2
num_train_epochs: 10
fp16: True
save_steps: 1000
logging_steps: 500
warmup_steps: 500
weight_decay: 0.0005
load_best_model_at_end: True
metric_for_best_model: wer
greater_is_better: True
save_total_limit: 2
eval: True
per_device_eval_batch_size: 2
eval_steps: 1000
evaluation_strategy: "steps"
per_device_test_batch_size: 2
shuffle: False
attention_dropout: 0.0
hidden_dropout: 0.0
feat_proj_dropout: 0.0
mask_time_prob: 0.05
layer_dropout: 0.0
ctc_loss_reduction: "mean"
unk: "[UNK]"
pad: "[PAD]"
word_delimited: "|"
sampling_rate: 16000
padding_value: 0.0
feature_size: 1
normalize: True
gradient_accumulation_steps: 2
gradient_checkpointing: True
max_answer_length : 500
test_weight: 0.6
eval_part_name: validation