menimeni123 commited on
Commit
e70b46d
1 Parent(s): 5237bb2
Files changed (1) hide show
  1. app.py +6 -7
app.py CHANGED
@@ -1,22 +1,21 @@
1
  # app.py
2
- import os
3
- import joblib
4
  import torch
5
- from transformers import BertTokenizer, BertForSequenceClassification
 
6
  from torch.nn.functional import softmax
7
 
8
- # Load the tokenizer and model
9
  tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
10
 
11
- # Check if CUDA is available, otherwise use CPU
12
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
 
14
- # Load the saved model
15
  model = joblib.load('model.joblib')
16
  model.to(device)
17
  model.eval()
18
 
19
- # Class names
20
  class_names = ["JAILBREAK", "INJECTION", "PHISHING", "SAFE"]
21
 
22
  def preprocess(text):
 
1
  # app.py
 
 
2
  import torch
3
+ import joblib
4
+ from transformers import BertTokenizer
5
  from torch.nn.functional import softmax
6
 
7
+ # Load the tokenizer
8
  tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
9
 
10
+ # Device configuration
11
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
 
13
+ # Load your saved model
14
  model = joblib.load('model.joblib')
15
  model.to(device)
16
  model.eval()
17
 
18
+ # Class names corresponding to the labels
19
  class_names = ["JAILBREAK", "INJECTION", "PHISHING", "SAFE"]
20
 
21
  def preprocess(text):