meryemmm22's picture
End of training
8454f34 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
  - generated_from_trainer
datasets:
  - turkish_ner
metrics:
  - f1
  - precision
  - recall
  - accuracy
model-index:
  - name: turkish-ner-mBERT-05
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: turkish_ner
          type: turkish_ner
          config: default
          split: train
          args: default
        metrics:
          - name: F1
            type: f1
            value: 0.19467271181637857
          - name: Precision
            type: precision
            value: 0.3664
          - name: Recall
            type: recall
            value: 0.13254871695929
          - name: Accuracy
            type: accuracy
            value: 0.8172224930461962

turkish-ner-mBERT-05

This model is a fine-tuned version of bert-base-multilingual-cased on the turkish_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5967
  • F1: 0.1947
  • Precision: 0.3664
  • Recall: 0.1325
  • Accuracy: 0.8172

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
No log 1.0 250 0.6886 0.0090 0.1702 0.0046 0.8144
0.8103 2.0 500 0.6445 0.1025 0.2930 0.0621 0.8158
0.8103 3.0 750 0.6265 0.1546 0.3204 0.1019 0.8130
0.5809 4.0 1000 0.5952 0.1790 0.3878 0.1163 0.8224
0.5809 5.0 1250 0.5967 0.1947 0.3664 0.1325 0.8172

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0