Edit model card

Malaysian Qwen1.5-0.5B + siglip-base-patch16-384

WanDB https://wandb.ai/huseinzol05/vision-qwen0.5?workspace=user-huseinzol05

how-to

from modeling_vision import MM_LLMs, MM_LLMs_Config
from transformers import AutoTokenizer, AutoProcessor
from PIL import Image
import requests

model = MM_LLMs.from_pretrained(
    'mesolitica/malaysian-Qwen1.5-0.5B-siglip-base-384-vision',
    flash_attention = True,
    dtype = torch.bfloat16,
    torch_dtype = torch.bfloat16
)
_ = model.cuda()

image_processor = AutoProcessor.from_pretrained('google/siglip-base-patch16-384')
tokenizer = AutoTokenizer.from_pretrained('mesolitica/malaysian-Qwen1.5-0.5B-siglip-base-384-vision')
model.llm.generation_config.eos_token_id = tokenizer.eos_token_id

def prepare_dataset(messages, images: List[str] = None):
    if images is not None:
        images = [Image.open(f).convert('RGB') for f in images]
        image_output = image_processor(images=images, return_tensors='pt')['pixel_values']
    else:
        image_output = None
    
    prompt = tokenizer.apply_chat_template(messages, tokenize = False)
    outputs = tokenizer(
                    prompt,
                    return_tensors='pt',
                    return_overflowing_tokens=False,
                    return_length=False)

    outputs['images'] = image_output
    outputs['image_index'] = torch.tensor([0] * len(outputs['images']))
    outputs['image_starts'] = torch.tensor([tokenizer.convert_tokens_to_ids('<image>')] * len(outputs['images']))
    return outputs

with open('Persian-cat-breed.jpg', 'wb') as fopen:
    fopen.write(requests.get('https://cdn.beautifulnara.net/wp-content/uploads/2017/12/10201620/Persian-cat-breed.jpg').content)

with open('nasi-goreng-1-23.jpg', 'wb') as fopen:
    fopen.write(requests.get('https://www.jocooks.com/wp-content/uploads/2023/09/nasi-goreng-1-23.jpg').content)

messages = [
    {'role': 'user', 'content': '<image> </image> ini gambar apa'},
]
outputs = prepare_dataset(messages, images = ['Persian-cat-breed.jpg'])
outputs['images'] = outputs['images'].type(model.dtype)
for k in outputs.keys():
    if outputs[k] is not None:
        outputs[k] = outputs[k].cuda()

with torch.no_grad():
    model_inputs = model.prepare_inputs_for_generation(**outputs)
r = model_inputs.pop('input_ids', None)

generate_kwargs = dict(
    model_inputs,
    max_new_tokens=300,
    top_p=0.95,
    top_k=50,
    temperature=0.1,
    do_sample=True,
    num_beams=1,
)

r = model.llm.generate(**generate_kwargs)
print(tokenizer.decode(r[0]))
<|endoftext|><|im_start|>assistant
Ini adalah gambar kucing putih yang duduk di atas sofa hitam.<|im_end|>
messages = [
    {'role': 'user', 'content': '<image> </image> <image> </image> apa kaitan 2 gambar ni'},
]
outputs = prepare_dataset(messages, images = ['Persian-cat-breed.jpg', 'nasi-goreng-1-23.jpg'])
outputs['images'] = outputs['images'].type(model.dtype)
for k in outputs.keys():
    if outputs[k] is not None:
        outputs[k] = outputs[k].cuda()

with torch.no_grad():
    model_inputs = model.prepare_inputs_for_generation(**outputs)
r = model_inputs.pop('input_ids', None)

generate_kwargs = dict(
    model_inputs,
    max_new_tokens=300,
    top_p=0.95,
    top_k=50,
    temperature=0.1,
    do_sample=True,
    num_beams=1,
)

r = model.llm.generate(**generate_kwargs)
print(tokenizer.decode(r[0]))
<|endoftext|><|im_start|>assistant
Tiada hubungan langsung antara gambar 1 dan gambar 2. Gambar 1 ialah imej kucing putih dengan bulu putih, manakala gambar 2 ialah gambar mangkuk makan tengah hari kacang hitam dan lobak merah yang dicincang, dengan garpu diletakkan di sebelahnya. Kedua-duanya tidak berkaitan dari segi kandungan.<|im_end|>
Downloads last month
17
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Collection including mesolitica/malaysian-Qwen1.5-0.5B-siglip-base-384-vision