File size: 1,990 Bytes
c48371d 3e84a86 c48371d 3e84a86 c48371d 3e84a86 b6f0cde 3e84a86 c5e53d3 3e84a86 c5e53d3 3e84a86 c5e53d3 3e84a86 c5e53d3 3e84a86 c256d82 3e84a86 c5e53d3 3e84a86 c256d82 c5e53d3 3a39a29 c256d82 3e84a86 c5e53d3 3e84a86 b6f0cde 3e84a86 b6f0cde 3e84a86 b6f0cde 3e84a86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: mit
language:
- en
---
<h1 align="center">Infinity Embedding Model</h1>
This is the stable default model for infinity.
```bash
pip install infinity_emb[all]
```
More details about the infinity inference project please refer to the Github: [Infinity](https://github.com/michaelfeil/infinity).
## Usage for Embedding Model via infinity in Python
To deploy files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package.
Recommended is `device="cuda", engine="torch"` with flash attention on gpu, and `device="cpu", engine="optimum"` for onnx inference.
```python
import asyncio
from infinity_emb import AsyncEmbeddingEngine, EngineArgs
sentences = ["Embed this is sentence via Infinity.", "Paris is in France."]
engine = AsyncEmbeddingEngine.from_args(
EngineArgs(
model_name_or_path = "michaelfeil/bge-small-en-v1.5",
device="cuda",
# or device="cpu"
engine="torch",
# or engine="optimum"
compile=True # enable torch.compile
))
async def main():
async with engine:
embeddings, usage = await engine.embed(sentences=sentences)
asyncio.run(main())
```
## CLI interface
The same args
```bash
pip install infinity_emb
infinity_emb --model-name-or-path michaelfeil/bge-small-en-v1.5 --port 7997
```
## Contact
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
You also can email Michael Feil (infinity at michaelfeil.eu).
## Citation
If you find this repository useful, please consider giving a star :star: and citation
```
@software{Feil_Infinity_2023,
author = {Feil, Michael},
month = oct,
title = {{Infinity - To Embeddings and Beyond}},
url = {https://github.com/michaelfeil/infinity},
year = {2023}
}
```
## License
Infinity is licensed under the [MIT License](https://github.com/michaelfeil/infinity/blob/master/LICENSE).
|