metadata
language:
- en
datasets:
- natural_instructions
- the_pile
- cot
- Muennighoff/P3
tags:
- ctranslate2
- int8
- float16 - gpt
pipeline_tag: text-generation
inference:
parameters:
temperature: 0.1
widget:
- text: >-
Is this review positive or negative? Review: Best cast iron skillet you
will ever buy. Answer:
example_title: Sentiment analysis
- text: 'Where is Zurich? Ans:'
example_title: Question Answering
# Fast-Inference with Ctranslate2
Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
quantized version of togethercomputer/GPT-JT-6B-v0
pip install hf-hub-ctranslate2>=2.0.6
Converted on 2023-05-19 using
ct2-transformers-converter --model togethercomputer/GPT-JT-6B-v0 --output_dir /home/michael/tmp-ct2fast-GPT-JT-6B-v0 --force --copy_files merges.txt tokenizer.json README.md tokenizer_config.json vocab.json special_tokens_map.json added_tokens.json .gitattributes --quantization float16
Checkpoint compatible to ctranslate2>=3.13.0 and hf-hub-ctranslate2>=2.0.6
compute_type=int8_float16
fordevice="cuda"
compute_type=int8
fordevice="cpu"
from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub
from transformers import AutoTokenizer
model_name = "michaelfeil/ct2fast-GPT-JT-6B-v0"
# use either TranslatorCT2fromHfHub or GeneratorCT2fromHfHub here, depending on model.
model = GeneratorCT2fromHfHub(
# load in int8 on CUDA
model_name_or_path=model_name,
device="cuda",
compute_type="int8_float16",
tokenizer=AutoTokenizer.from_pretrained("togethercomputer/GPT-JT-6B-v0")
)
outputs = model.generate(
text=["How do you call a fast Flan-ingo?", "User: How are you doing? Bot:"],
)
print(outputs)
Licence and other remarks:
This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
Original description
Quick Start
from transformers import pipeline
pipe = pipeline(model='togethercomputer/GPT-JT-6B-v0')
pipe("Where is Zurich? Ans:")