michaelfeil's picture
Upload OpenAssistant/stablelm-7b-sft-v7-epoch-3 ctranslate fp16 weights
80a86ec
---
language:
- en
tags:
- ctranslate2
- int8
- float16
- sft
pipeline_tag: text-generation
widget:
- text: >-
<|prompter|>What is a meme, and what's the history behind this
word?<|endoftext|><|assistant|>
- text: <|prompter|>What's the Earth total population<|endoftext|><|assistant|>
- text: >-
<|prompter|>Write a story about future of AI
development<|endoftext|><|assistant|>
---
# # Fast-Inference with Ctranslate2
Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
quantized version of [OpenAssistant/stablelm-7b-sft-v7-epoch-3](https://huggingface.co/OpenAssistant/stablelm-7b-sft-v7-epoch-3)
```bash
pip install hf-hub-ctranslate2>=2.0.8 ctranslate2>=3.14.0
```
Converted on 2023-06-02 using
```
ct2-transformers-converter --model OpenAssistant/stablelm-7b-sft-v7-epoch-3 --output_dir /home/michael/tmp-ct2fast-stablelm-7b-sft-v7-epoch-3 --force --copy_files tokenizer.json README.md tokenizer_config.json generation_config.json special_tokens_map.json .gitattributes --quantization int8_float16 --trust_remote_code
```
Checkpoint compatible to [ctranslate2>=3.14.0](https://github.com/OpenNMT/CTranslate2)
and [hf-hub-ctranslate2>=2.0.8](https://github.com/michaelfeil/hf-hub-ctranslate2)
- `compute_type=int8_float16` for `device="cuda"`
- `compute_type=int8` for `device="cpu"`
```python
from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub
from transformers import AutoTokenizer
model_name = "michaelfeil/ct2fast-stablelm-7b-sft-v7-epoch-3"
# use either TranslatorCT2fromHfHub or GeneratorCT2fromHfHub here, depending on model.
model = GeneratorCT2fromHfHub(
# load in int8 on CUDA
model_name_or_path=model_name,
device="cuda",
compute_type="int8_float16",
# tokenizer=AutoTokenizer.from_pretrained("OpenAssistant/stablelm-7b-sft-v7-epoch-3")
)
outputs = model.generate(
text=["def fibonnaci(", "User: How are you doing? Bot:"],
max_length=64,
include_prompt_in_result=False
)
print(outputs)
```
# Licence and other remarks:
This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
# Original description
# Open-Assistant StableLM-7B SFT-7 Model
This is the 7th iteration English supervised-fine-tuning (SFT) model of
the [Open-Assistant](https://github.com/LAION-AI/Open-Assistant) project.
It is based on a StableLM 7B that was fine-tuned on human demonstrations
of assistant conversations collected through the
[https://open-assistant.io/](https://open-assistant.io/) human feedback web
app before April 12, 2023.
## Model Details
- **Developed by:** [Open-Assistant Contributors](https://open-assistant.io/)
- **Model type:** Transformer-based Language Model
- **Language:** English
- **Finetuned from:** [stabilityai/stablelm-base-alpha-7b](https://huggingface.co/stabilityai/stablelm-base-alpha-7b)
- **Code:** [Open-Assistant/model/model_training](https://github.com/LAION-AI/Open-Assistant/tree/main/model/model_training)
- **Demo:** TODO
- **License:** Creative Commons license ([CC BY-SA-4.0](https://creativecommons.org/licenses/by-sa/4.0/))
- **Contact:** [Open-Assistant Discord](https://ykilcher.com/open-assistant-discord)
## Prompting
Two special tokens are used to mark the beginning of user and assistant turns:
`<|prompter|>` and `<|assistant|>`. Each turn ends with a `<|endoftext|>` token.
Input prompt example:
```
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
```
The input ends with the `<|assistant|>` token to signal that the model should
start generating the assistant reply.
## Dev Details
- wandb: https://wandb.ai/open-assistant/supervised-finetuning/runs/08dfhyuc
- base model: [stabilityai/stablelm-base-alpha-7b](https://huggingface.co/stabilityai/stablelm-base-alpha-7b)
- checkpoint: 3 epochs (12000 steps)
command: `deepspeed trainer_sft.py --configs defaults stablelm-7b oasst-mix --cache_dir /home/ubuntu/data_cache --output_dir .saved/stable-lm-7b-1 --num_train_epochs 4 --deepspeed`
data:
```
oasst-mix:
save_strategy: epoch
sort_by_length: false
use_custom_sampler: false
datasets:
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
- vicuna:
val_split: 0.05
max_val_set: 800
fraction: 1.0
- dolly15k:
val_split: 0.05
max_val_set: 300
- grade_school_math_instructions:
val_split: 0.05
- code_alpaca:
val_split: 0.05
max_val_set: 250
```
stablelm:
```
stablelm-7b:
dtype: fp16
log_dir: stablelm_log_7b
model_name: stabilityai/stablelm-base-alpha-7b
output_dir: stablelm_7b
max_length: 4096
warmup_steps: 100
gradient_checkpointing: true
gradient_accumulation_steps: 2
per_device_train_batch_size: 4
per_device_eval_batch_size: 4
eval_steps: 100
save_steps: 500
num_train_epochs: 4
save_total_limit: 4
use_flash_attention: true
```
zero config:
```
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"total_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 1e9,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 1e9,
"contiguous_gradients": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
```