DialoGPT-large / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
1a118a8 verified
|
raw
history blame
5.68 kB
metadata
license: mit
tags:
  - conversational
thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
model-index:
  - name: DialoGPT-large
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 23.38
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=microsoft/DialoGPT-large
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 25.77
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=microsoft/DialoGPT-large
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 23.81
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=microsoft/DialoGPT-large
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 50.27
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=microsoft/DialoGPT-large
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 52.41
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=microsoft/DialoGPT-large
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 0
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=microsoft/DialoGPT-large
          name: Open LLM Leaderboard

A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)

DialoGPT is a SOTA large-scale pretrained dialogue response generation model for multiturn conversations. The human evaluation results indicate that the response generated from DialoGPT is comparable to human response quality under a single-turn conversation Turing test. The model is trained on 147M multi-turn dialogue from Reddit discussion thread.

  • Multi-turn generation examples from an interactive environment:
Role Response
User Does money buy happiness?
Bot Depends how much money you spend on it .
User What is the best way to buy happiness ?
Bot You just have to be a millionaire by your early 20s, then you can be happy .
User This is so difficult !
Bot You have no idea how hard it is to be a millionaire and happy . There is a reason the rich have a lot of money

Please find the information about preprocessing, training and full details of the DialoGPT in the original DialoGPT repository

ArXiv paper: https://arxiv.org/abs/1911.00536

How to use

Now we are ready to try out how the model works as a chatting partner!

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch


tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")

# Let's chat for 5 lines
for step in range(5):
    # encode the new user input, add the eos_token and return a tensor in Pytorch
    new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')

    # append the new user input tokens to the chat history
    bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids

    # generated a response while limiting the total chat history to 1000 tokens, 
    chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)

    # pretty print last ouput tokens from bot
    print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 29.27
AI2 Reasoning Challenge (25-Shot) 23.38
HellaSwag (10-Shot) 25.77
MMLU (5-Shot) 23.81
TruthfulQA (0-shot) 50.27
Winogrande (5-shot) 52.41
GSM8k (5-shot) 0.00