deberta-xxlarge-v2 / README.md
DeBERTa's picture
Update README.md
993f7d6
|
raw
history blame
3.11 kB
metadata
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
license: mit

DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.

Please check the official repository for more details and updates.

This is the DeBERTa V2 xxlarge model with 48 layers, 1536 hidden size. Total parameters 1.5B. It's trained with 160GB data.

Fine-tuning on NLU tasks

We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.

Model SQuAD 1.1 SQuAD 2.0 MNLI-m/mm SST-2 QNLI CoLA RTE MRPC(acc/f1) QQP STS-B
BERT-Large 90.9/84.1 81.8/79.0 86.6/- 93.2 92.3 60.6 70.4 88.0/- 91.3 90.0
RoBERTa-Large 94.6/88.9 89.4/86.5 90.2/- 96.4 93.9 68.0 86.6 90.9/- 92.2 92.4
XLNet-Large 95.1/89.7 90.6/87.9 90.8/- 97.0 94.9 69.0 85.9 90.8/- 92.3 92.5
DeBERTa-Large 95.5/90.1 90.7/88.0 91.3/91.1 96.5 95.3 69.5 86.6 92.6/94.6 92.3 92.5
DeBERTa-XLarge -/- -/- 91.5/91.0 - - - 89.5 92.1/94.3 - -
DeBERTa-XLarge-V2 - - 91.7/91.6 - - - - - - -
DeBERTa-XXLarge-V2 96.1/91.4 92.2/89.7 91.7/91.8 - - - - - - -
DeBERTa-XLarge-V2-mnli - - 91.7/91.6 - - - 93.9 - - -
DeBERTa-XXLarge-V2-mnli - - 91.7/91.8 - - - 93.5 - - -

Note

To try the XXLarge model with HF transformers, you need to specify --sharded_ddp


cd transformers/examples/text-classification/
export TASK_NAME=mrpc
python -m torch.distributed.launch --nproc_per_node=8 run_glue.py   --model_name_or_path microsoft/deberta-xxlarge-v2   \
--task_name $TASK_NAME   --do_train   --do_eval   --max_seq_length 128   --per_device_train_batch_size 4   \
--learning_rate 3e-6   --num_train_epochs 3   --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16

Citation

If you find DeBERTa useful for your work, please cite the following paper:

@misc{he2020deberta,
    title={DeBERTa: Decoding-enhanced BERT with Disentangled Attention},
    author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
    year={2020},
    eprint={2006.03654},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
        }