julien-c's picture
julien-c HF staff
Migrate model card from transformers-repo
387a8e2
|
raw
history blame
1.7 kB
---
language: en
datasets:
- squad
---
##
prophetnet-large-uncased-squad-qg
Fine-tuned weights(converted from [original fairseq version repo](https://github.com/microsoft/ProphetNet)) for [ProphetNet](https://arxiv.org/abs/2001.04063) on question generation
SQuAD 1.1.
ProphetNet is a new pre-trained language model for sequence-to-sequence learning with a novel self-supervised objective called future n-gram prediction.
ProphetNet is able to predict more future tokens with a n-stream decoder. The original implementation is Fairseq version at [github repo](https://github.com/microsoft/ProphetNet).
### Usage
```
from transformers import ProphetNetTokenizer, ProphetNetForConditionalGeneration, ProphetNetConfig
model = ProphetNetForConditionalGeneration.from_pretrained('microsoft/prophetnet-large-uncased-squad-qg')
tokenizer = ProphetNetTokenizer.from_pretrained('microsoft/prophetnet-large-uncased-squad-qg')
FACT_TO_GENERATE_QUESTION_FROM = ""Bill Gates [SEP] Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975."
inputs = tokenizer([FACT_TO_GENERATE_QUESTION_FROM], return_tensors='pt')
# Generate Summary
question_ids = model.generate(inputs['input_ids'], num_beams=5, early_stopping=True)
tokenizer.batch_decode(question_ids, skip_special_tokens=True)
# should give: 'along with paul allen, who founded microsoft?'
```
### Citation
```bibtex
@article{yan2020prophetnet,
title={Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training},
author={Yan, Yu and Qi, Weizhen and Gong, Yeyun and Liu, Dayiheng and Duan, Nan and Chen, Jiusheng and Zhang, Ruofei and Zhou, Ming},
journal={arXiv preprint arXiv:2001.04063},
year={2020}
}
```