tapex-large / README.md
Qian Liu
Update README.md
08b6fcc
|
raw
history blame
2.82 kB
metadata
language: en
tags:
  - tapex
license: mit

TAPEX (large-sized model)

TAPEX was proposed in TAPEX: Table Pre-training via Learning a Neural SQL Executor by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. The original repo can be found here.

Model description

TAPEX (Table Pre-training via Execution) is a conceptually simple and empirically powerful pre-training approach to empower existing models with table reasoning skills. TAPEX realizes table pre-training by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries.

TAPEX is based on the BART architecture, the transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder.

Intended Uses

You can use the raw model for simulating neural SQL execution, i.e., employ TAPEX to execute a SQL query on a given table. However, the model is mostly meant to be fine-tuned on a supervised dataset. Currently TAPEX can be fine-tuned to tackle table question answering tasks and table fact verification tasks. See the model hub to look for fine-tuned versions on a task that interests you.

How to Use

Here is how to use this model in transformers:

from transformers import TapexTokenizer, BartForConditionalGeneration
import pandas as pd

tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large")
model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large")

data = {
    "year": [1896, 1900, 1904, 2004, 2008, 2012],
    "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
}
table = pd.DataFrame.from_dict(data)

# tapex accepts uncased input since it is pre-trained on the uncased corpus
query = "select year where city = beijing"
encoding = tokenizer(table=table, query=query, return_tensors="pt")

outputs = model.generate(**encoding)

print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
# ['2008']

How to Fine-tuning

Please find the fine-tuning script here.

BibTeX entry and citation info

@inproceedings{
    liu2022tapex,
    title={{TAPEX}: Table Pre-training via Learning a Neural {SQL} Executor},
    author={Qian Liu and Bei Chen and Jiaqi Guo and Morteza Ziyadi and Zeqi Lin and Weizhu Chen and Jian-Guang Lou},
    booktitle={International Conference on Learning Representations},
    year={2022},
    url={https://openreview.net/forum?id=O50443AsCP}
}