flan-t5-base-flant5 / README.md
mike157's picture
End of training
e97c428
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: flan-t5-base-flant5
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: train
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 46.9086
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-base-flant5
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3709
- Rouge1: 46.9086
- Rouge2: 23.3531
- Rougel: 39.5835
- Rougelsum: 43.1465
- Gen Len: 17.2027
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.4403 | 1.0 | 1842 | 1.3829 | 46.5072 | 23.1696 | 39.4293 | 42.8838 | 17.0977 |
| 1.3534 | 2.0 | 3684 | 1.3732 | 47.0676 | 23.4885 | 39.6014 | 43.2614 | 17.4554 |
| 1.2795 | 3.0 | 5526 | 1.3709 | 46.9086 | 23.3531 | 39.5835 | 43.1465 | 17.2027 |
| 1.2313 | 4.0 | 7368 | 1.3736 | 47.4405 | 23.7952 | 40.0159 | 43.6213 | 17.2198 |
| 1.1934 | 5.0 | 9210 | 1.3772 | 47.41 | 23.971 | 40.0597 | 43.7149 | 17.3162 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2