mikr's picture
End of training
27bf94d verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_0
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-czech-colab-cv16
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_0
          type: common_voice_16_0
          config: cs
          split: test
          args: cs
        metrics:
          - name: Wer
            type: wer
            value: 0.05733702722973076

w2v-bert-2.0-czech-colab-cv16

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1023
  • Wer: 0.0573

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.5297 0.66 300 0.1448 0.1299
0.0886 1.32 600 0.1353 0.1051
0.0717 1.98 900 0.1157 0.0861
0.0463 2.64 1200 0.0994 0.0759
0.0404 3.3 1500 0.1054 0.0724
0.0314 3.96 1800 0.0915 0.0694
0.0227 4.63 2100 0.0926 0.0664
0.0205 5.29 2400 0.0992 0.0652
0.0161 5.95 2700 0.0932 0.0654
0.0124 6.61 3000 0.0902 0.0629
0.0097 7.27 3300 0.0970 0.0612
0.0081 7.93 3600 0.0946 0.0602
0.0054 8.59 3900 0.0962 0.0588
0.0048 9.25 4200 0.1029 0.0579
0.0034 9.91 4500 0.1023 0.0573

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.1