min2yadav's picture
End of training
6cddcab verified
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: RoBERTa-large-PM-M3-Voc-hf-finetuned-ner
    results: []

RoBERTa-large-PM-M3-Voc-hf-finetuned-ner

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2320
  • Precision: 0.7794
  • Recall: 0.9175
  • F1: 0.8429
  • Accuracy: 0.9470

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 36 1.0441 0.2844 0.0828 0.1283 0.7449
No log 2.0 72 0.7648 0.3878 0.5899 0.4680 0.7606
No log 3.0 108 0.5539 0.5096 0.6022 0.5520 0.8166
No log 4.0 144 0.6093 0.4714 0.7188 0.5694 0.7981
No log 5.0 180 0.5084 0.5185 0.7530 0.6141 0.8381
No log 6.0 216 0.3945 0.6099 0.7329 0.6658 0.8775
No log 7.0 252 0.4960 0.5273 0.7961 0.6344 0.8458
No log 8.0 288 0.3364 0.6501 0.8013 0.7178 0.9002
No log 9.0 324 0.3166 0.6601 0.8418 0.7399 0.9092
No log 10.0 360 0.2691 0.7087 0.8470 0.7717 0.9233
No log 11.0 396 0.2663 0.7215 0.8652 0.7868 0.9290
No log 12.0 432 0.2877 0.7138 0.8904 0.7924 0.9238
No log 13.0 468 0.2712 0.7353 0.8990 0.8090 0.9321
0.4329 14.0 504 0.2485 0.7511 0.8990 0.8184 0.9387
0.4329 15.0 540 0.2236 0.7859 0.9056 0.8416 0.9474
0.4329 16.0 576 0.2392 0.7696 0.9131 0.8352 0.9439
0.4329 17.0 612 0.2420 0.7684 0.9157 0.8356 0.9438
0.4329 18.0 648 0.2375 0.7708 0.9172 0.8377 0.9445
0.4329 19.0 684 0.2299 0.7832 0.9179 0.8452 0.9478
0.4329 20.0 720 0.2320 0.7794 0.9175 0.8429 0.9470

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1