layoutlm-funsd-tf / README.md
minhvuquang317's picture
Training in progress epoch 6
a7193bb
|
raw
history blame
2.54 kB
---
tags:
- generated_from_keras_callback
model-index:
- name: minhvuquang317/layoutlm-funsd-tf
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# minhvuquang317/layoutlm-funsd-tf
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3479
- Validation Loss: 0.6233
- Train Overall Precision: 0.7275
- Train Overall Recall: 0.7702
- Train Overall F1: 0.7482
- Train Overall Accuracy: 0.8127
- Epoch: 6
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.6700 | 1.3895 | 0.2812 | 0.2880 | 0.2846 | 0.5333 | 0 |
| 1.1465 | 0.8828 | 0.5819 | 0.6433 | 0.6111 | 0.7324 | 1 |
| 0.7878 | 0.7302 | 0.6497 | 0.7240 | 0.6849 | 0.7791 | 2 |
| 0.6195 | 0.6630 | 0.6844 | 0.7692 | 0.7243 | 0.7949 | 3 |
| 0.5031 | 0.6265 | 0.6929 | 0.7903 | 0.7384 | 0.8112 | 4 |
| 0.4202 | 0.6244 | 0.7329 | 0.7863 | 0.7587 | 0.8124 | 5 |
| 0.3479 | 0.6233 | 0.7275 | 0.7702 | 0.7482 | 0.8127 | 6 |
### Framework versions
- Transformers 4.25.1
- TensorFlow 2.9.0
- Datasets 2.8.0
- Tokenizers 0.13.2