|
--- |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: layoutlm-funsd-tf |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlm-funsd-tf |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.3061 |
|
- Validation Loss: 0.6626 |
|
- Train Overall Precision: 0.7205 |
|
- Train Overall Recall: 0.7863 |
|
- Train Overall F1: 0.7519 |
|
- Train Overall Accuracy: 0.8006 |
|
- Epoch: 7 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: mixed_float16 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch | |
|
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:| |
|
| 1.6700 | 1.3895 | 0.2812 | 0.2880 | 0.2846 | 0.5333 | 0 | |
|
| 1.1465 | 0.8828 | 0.5819 | 0.6433 | 0.6111 | 0.7324 | 1 | |
|
| 0.7878 | 0.7302 | 0.6497 | 0.7240 | 0.6849 | 0.7791 | 2 | |
|
| 0.6195 | 0.6630 | 0.6844 | 0.7692 | 0.7243 | 0.7949 | 3 | |
|
| 0.5031 | 0.6265 | 0.6929 | 0.7903 | 0.7384 | 0.8112 | 4 | |
|
| 0.4202 | 0.6244 | 0.7329 | 0.7863 | 0.7587 | 0.8124 | 5 | |
|
| 0.3479 | 0.6233 | 0.7275 | 0.7702 | 0.7482 | 0.8127 | 6 | |
|
| 0.3061 | 0.6626 | 0.7205 | 0.7863 | 0.7519 | 0.8006 | 7 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- TensorFlow 2.9.0 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |
|
|